Skip to main content

Advertisement

Log in

Application of EEG Time-Varying Networks in the Evaluation of Dynamic Functional Brain Networks

  • Original Paper
  • Published:
Augmented Human Research Aims and scope Submit manuscript

Abstract

The variability that occurs in spontaneous network communication has brought about increased attention in the area of study that is centered on analytical approaches and models aimed at addressing the shorter timescales conceivable with dynamic functional networks. As the shifts in functional connectivity have been immense in the quantification of task performance in the cognitive domain so has the usefulness in the clinical setting been predicted. More so, the analysis of dynamic functional connections can be of considerable clinical relevance as had been observed in the studies of pathologies such as schizophrenia, Alzheimer's disease mild cognitive impairment. The evaluation of dynamic functional connectivity is however far from being perfect. Though functional magnetic resonance, imaging which has been vastly employed in evaluating neural communication in the human brain, does not appear to be efficient in measuring neuronal dynamics, and this could be down to the variability in sampling, physiological, noise, and head motion that usually accompany fMRI. This is where EEG, despite its limited spatial resolution, has found significance owing to the delivery of temporal resolution which is higher in measuring the time-varying relationships feasible in the rhythmic patterns of neural activity.

In this paper, we shall aim at reviewing the strides that have been made in the efforts to develop an effective technique for quantifying the transitions in functional connectivity that take place over specific timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanfratello L, Houck J, Calhoun V (2018) Dynamic functional network connectivity in schizophrenia with MEG and fMRI, do different time scales tell a different story? bioRxiv. https://doi.org/10.1101/432385

    Article  Google Scholar 

  2. Miller RL, Yaesoubi M, Calhoun VD (2014) Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society 2014. IEEE, pp 3837–3840. https://doi.org/10.1109/EMBC.2014.6944460

  3. Ghosh A, Rho Y, McIntosh AR, Kotter R, Jirsa VK (2008) Noise during rest enables the exploration of thebrain’s dynamic repertoire. PLoS Comput Biol 4(10):e1000196. https://doi.org/10.1371/journal.pcbi.1000196

    Article  Google Scholar 

  4. Deco G, Jirsa VK, McIntosh AR (2011) Emerging conceptsfor the dynamical organization of resting-state activity inthe brain. Nat Rev Neurosci 12(1):43–56

    Article  Google Scholar 

  5. Cabral J, Kringelbach ML, Deco G (2017) G, Functionalconnectivity dynamically evolves on multiple time-scalesover a static structural connectome: Models and mechanisms. Neuroimage 160:84–96. https://doi.org/10.1016/j.neuroimage.2017.03.045

    Article  Google Scholar 

  6. Jia H, Hu X, Deshpande G (2014) Behavioral relevance of the dynamics of the functional brain connectome. Brain Connect 4:741–759

    Article  Google Scholar 

  7. Kucyi A, Davis KD (2014) Dynamic functional connectivity of the default mode network tracks daydreaming. Neuroimage 100:471–480

    Article  Google Scholar 

  8. Vidaurre D, Hunt LT, Quinn AJ, Hunt BAE, Brookes MJ, Nobre AC, Woolrich MW (2018) Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat Commun 9:2987

    Article  Google Scholar 

  9. Zahneisen B, Grotz T, Lee KJ, Ohlendorf S, Reisert M, Zaitsev M, Hennig J (2011) Threedimensional MR-encephalography: fast volumetricbrain imaging using rosette trajectories. Magn Reson Med 65(5):1260–1268

    Article  Google Scholar 

  10. Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis NK, Deco G (2016) Cansliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256

    Article  Google Scholar 

  11. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360–78. https://doi.org/10.1016/j.neuroimage.2013.05.079

    Article  Google Scholar 

  12. Leonardi N, Van De Ville D (2015) On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104:430–436

    Article  Google Scholar 

  13. Laumann TO et al (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27(10):4719–4732

    Google Scholar 

  14. Mutlu AY, Bernat E, Aviyente S (2012) A signal-processing-based approach to time-varying graph analysis for dynamic brain network identification. Comput Math Methods Med. https://doi.org/10.1155/2012/451516

    Article  MathSciNet  MATH  Google Scholar 

  15. Leistritz L, Schiecke K, Astolfi L, Witte H (2016) Time-Variant Modeling of Brain Processes. Proc IEEE 104(2):262–281. https://doi.org/10.1109/JPROC.2015.2497144

    Article  Google Scholar 

  16. Preti MG, Bolton TA, Van De Ville D (2016) The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage (December). https://doi.org/10.1016/j.neuroimage.2016.12.061

    Article  Google Scholar 

  17. Moussa MN, Vechlekar CD, Burdette JH, Steen MR, Hugenschmidt CE, Laurienti PJ (2011) Changes in cognitive state alter human functional brain networks. Front HumNeurosci 5:1–15

    Google Scholar 

  18. Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, Poldrack RA (2016) The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron 92(2):544–554. https://doi.org/10.1016/j.neuron.2016.09.018

    Article  Google Scholar 

  19. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14(6):277–290. https://doi.org/10.1016/j.tics.2010.04.004

    Article  Google Scholar 

  20. de Pasquale F, Corbetta M, Betti V, Della Penna S (2018) Cortical cores in network dynamics. Neuroimage 180:370–82. https://doi.org/10.1016/j.neuroimage.2017.09.063

    Article  Google Scholar 

  21. Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole brain neuronal networks: a review. Neuroimage 180:577–593

    Article  Google Scholar 

  22. Liu BW, Mao JW, Shi YJ, Lu QC, Liang PJ, Zhang PM (2016) Analyzing epileptic network dynamics via time-variant partial directed coherence. In: 2016 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 368–374. https://doi.org/10.1109/BIBM.2016.7822547

  23. Vidaurre D, Abeysuriya R, Becker R, Quinn AJ, Alfaro-Almagro F, Smith SM et al (2017) Discoveringdynamic brain networks from big data in rest and task. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.06.077

    Article  Google Scholar 

  24. He B, Astolfi L, Valdes-Sosa PA, Marinazzo D, Palva SO, Benar CG, Michael CM, Koenig T (2019) Electrophysiological brain connectivity: theory and implementation. IEEE Trans Biomed Eng 66(7):2115

    Article  Google Scholar 

  25. Gao L, Sommerlade L, Coffman B, Zhang T, Stephen JM, Li D, Wang J, Grebogi C, Schelter B (2015) Granger causal time-dependent source connectivity in the somatosensory network. Sci Rep 5(1):10399. https://doi.org/10.1038/srep10399

    Article  Google Scholar 

  26. Hassan M, Wendling F (2015) Tracking dynamics of functional brain networks using dense EEG. IRBM 36(6):324–328. https://doi.org/10.1016/j.irbm.2015.09.004

    Article  Google Scholar 

  27. Wang Y, Ting CM, Ombao H (2016) Modeling effective connectivity in high dimensional cortical source signals. IEEE J Selected Topics Signal Processing 10(7):1315–1325. https://doi.org/10.1109/JSTSP.2016.2600023

    Article  Google Scholar 

  28. Becker H, Albera L, Comon P, Gribonval R, Merlet I (2014) Fast, variation-based methods for the analysis of extended brain sources. In: 2014 22nd European signal processing conference (EUSIPCO). IEEE, pp 41–45

  29. Jatoi A, Kamel N, Malik AS, Faye I (2014) EEG based brain source localization comparison of sLORETA and eLORETA. Australas Phys Eng Sci Med 37(4):713–721

    Article  Google Scholar 

  30. Lantz G et al (2001) Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns. Clin Neurophysiol 112(4):688–697

    Article  Google Scholar 

  31. Huppertz H-J, Hof E, Klisch J, Wagner M, Lücking CH, Kristeva-Feige R (2001) Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. Neuroimage 13(1):15–28

    Article  Google Scholar 

  32. Clemens B, Piros P, Bessenyei M, Tóth M, Hollódy K, Kondákor I (2008) Imaging the cortical effect of lamotrigine in patients with idiopathic generalized epilepsy: a low-resolution electromagnetic tomography (LORETA) study. Epilepsy Res 81(2–3):204–210

    Article  Google Scholar 

  33. Plomp G, Hervais-Adelman A, Astolfi L, Michael CM (2016) Early recurrence and ongoing parietal driving during elementary visual processing. Sci Rep 5(1):18733. https://doi.org/10.1038/srep18733

    Article  Google Scholar 

  34. Lie OV, van Mierlo P (2017) Seizure-onset mapping based on time-variant multivariate functional connectivity analysis of high-dimensional intracranial EEG: a Kalman filter approach. Brain Topogr 30(1):46–59. https://doi.org/10.1007/s10548-016-0527-x

    Article  Google Scholar 

  35. Garcia JO, Brooks J, Kerick S, Johnson T, Mullen TR, Vette JM (2017) Estimating direction in brain behavior interactions: proactive and reactive brain states in driving. NeuroImage 150:239–249. https://doi.org/10.1016/j.neuroimage.2017.02.057

    Article  Google Scholar 

  36. Weiss T, Hesse W, Ungureanu M, Hecht H, Leistritz L, Witte H et al (2008) How do brain areas communicate during the processing of noxious stimuli? An analysis of laser-evoked event-related potentials using the granger causality index. J Neurophysiol 99:2220–2231. https://doi.org/10.1152/jn.00912.2007

    Article  Google Scholar 

  37. Hu L, Zhang ZG, Hu Y (2012) A time-varying source connectivity approach to reveal human somatosensory information processing. NeuroImage 62:217–228. https://doi.org/10.1016/j.neuroimage.2012.03.094

    Article  Google Scholar 

  38. Astolfi L, Cincotti F, Mattia D, De Vico F, Tocci A, Colosimo A, Salinari S, Marciani MG, Hesse W, Witte H, Ursino M, Zavaglia M, Babiloni F (2008) Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans Biomed Eng 55:902–913

    Article  Google Scholar 

  39. Milde T, Leistritz L, Astolfi L, Miltner WH, Weiss T, Babiloni F, Witte H (2010) A new Kalman filter approach for the estimation of high-dimensional time-variant multivariate AR models and its application in analysis of laser-evoked brain potentials. NeuroImage 50(3):960–969. https://doi.org/10.1016/j.neuroimage.2009.12.110

    Article  Google Scholar 

  40. Arnold M, Milner X, Witte H, Bauer R, Braun C (1998) Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Trans Biomed Eng 45(5):553–562. https://doi.org/10.1109/10.668741

    Article  Google Scholar 

  41. Pascucci D, Rubega M, Plomp G (2019) Modeling time-varying brain networks with a self-tuning optimized Kalman filter. Neuroscience. https://doi.org/10.1101/856179

    Article  Google Scholar 

  42. Omidvarnia AH, Mesbah M, Khlif MS, OToole JM, Colditz PB, Boashash B (2011) Kalman filter based time-varying cortical connectivity analysis of newborn EEG. IEEE. https://doi.org/10.1109/IEMBS.2011.6090335

    Article  Google Scholar 

  43. Schlögl A (2000) The electroencephalogram and the adaptive autoregressive model: theory and applications. Shaker, Aachen

    MATH  Google Scholar 

  44. Hallac D, Park Y, Boyd S, Leskovec J. Network inference via the time-varying graphical lasso. InProceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2017 Aug 4 (pp. 205-213).

  45. Omidvarnia A, Azemi G, Boashash B, O’Toole JM, Colditz PB, Vanhatalo S (2013) Measuring time-varying information flow in scalp EEG signals: orthogonalized partial directed coherence. IEEE Trans Biomed Eng 61(3):680–693

    Article  Google Scholar 

  46. Seth AK, Barrett AB, Barnett L (2015) Granger causalityanalysis in neuroscience and neuroimaging. J Neurosci 35(8):3293–3297

    Article  Google Scholar 

  47. Li Y, Wei HL, Billings SA, Liao XF (2012) Time-varyinglinear and nonlinear parametric model for granger causalityanalysis. Phys Rev E 85(4):041906

    Article  Google Scholar 

  48. Sysoeva MV, Sitnikova E, Sysoev IV, Bezruchko BP, van Luijtelaar G (2014) Application of adaptive nonlineargranger causality: Disclosing network changes before andafter absence seizure onset in a genetic rat model. J Neurosci Methods 226:33–41

    Article  Google Scholar 

  49. Hu M, Li W, Liang H (2015) A copula-based Granger causality measure for the analysis of neural spike train data. IEEE/ACM Trans Comput Biol Bioinf 15(2):562–569

    Article  Google Scholar 

  50. Seth AK, Chorley P, Barnett LC (2013) Granger causalityanalysis of fmri bold signals is invariant to hemodynamicconvolution but not downsampling. Neuroimage 65:540–555

    Article  Google Scholar 

  51. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    Article  Google Scholar 

  52. Rashid B, Arbabshirani MR, Damaraju E, Cetin MS, Miller R, Pearlson GD, Calhoun VD (2016) Classification of schizophrenia and bipolar patients using static and dynamic resting-state FMRI brain connectivity. Neuroimage 134:645–657

    Article  Google Scholar 

  53. Allen E, Eichele T, Wu L, Calhoun V (2012) EEG signatures of functional connectivity states. Hum Brain Mapping. https://doi.org/10.1007/s10548-017-0546-2

    Article  Google Scholar 

  54. Preti MG, Bolton TAW, van De Ville D (2017) The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage 160:41–54

    Article  Google Scholar 

  55. Goucher-Lambert K, Cagan J (2019) Crowdsourcing inspiration: using crowd generated inspirational stimuli to support designer ideation. Design Studies 61:29

    Article  Google Scholar 

  56. Vidaurre D, Quinn AJ, Baker AP, Dupret D, Tejero-Cantero A, Woolrich MW (2016) Spectrally resolved fast transient brain states in electrophysiological data. Neuroimage 126:81–95. https://doi.org/10.1016/j.neuroimage.2015.11.047

    Article  Google Scholar 

  57. Esmaeili S, Araabi BN, Soltanian-Zadeh H, Schwabe L (2014) Variational Bayesian learning for Gaussian mixture HMM in seizure prediction based on long term EEG of epileptic rats. In: 2014 21th Iranian conference on biomedical engineering (ICBME) 2014. IEEE, pp 138–143

  58. Borst JP, Anderson JR (2015) “The discovery of processing stages: analyzing EEG data with hidden semi Markov models. Neuroimage 108:60–73. https://doi.org/10.1016/j.neuroimage.2014.12.029

    Article  Google Scholar 

  59. Jolliffe IT (1986) Principal component analysis. Springer, Berlin

    Book  Google Scholar 

  60. Cabral J, Kringelbach ML, Deco G (2014) Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol 114:102–131

    Article  Google Scholar 

  61. Xie S, Krishnan S (2014) Dynamic principal component analysis with nonoverlapping moving window and its applications to epileptic EEG classification. Sci World J. https://doi.org/10.1155/2014/419308

    Article  Google Scholar 

  62. Langer N, Von Bastian CC, Wirz H, Oberauer K, Jäncke L (2013) The effects of working memory training on functional brain network efficiency. Cortex 49(9):2424–2438

    Article  Google Scholar 

  63. Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM (2017) Electroencephalographic resting-state networks: source localization of microstates. Brain Connect 7(10):671–682

    Article  Google Scholar 

  64. Van Diessen E, Numan T, Van Dellen E, Van Der Kooi AW, Boersma M, Hofman D, Stam CJ (2015) Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin Neurophysiol 126(8):1468–1481

    Article  Google Scholar 

  65. Kabbara A, Khalil M, O’Neill G, Dujardin K, El Traboulsi Y, Wendling F, Hassan M (2019) Detecting modular brain states in rest and task. Netw Neurosci 3(3):878–901. https://doi.org/10.1162/netn_a_00090

    Article  Google Scholar 

  66. Liu X, Li T, Tang C, Xu T, Chen P, Bezerianos A, Wang H (2016) Emotion recognition and dynamic functional connectivity analysis based on EEG. IEEE Trans J. https://doi.org/10.1109/ACCESS.2019.2945059

    Article  Google Scholar 

  67. Núñez P, Poza J, Gómez C, Ruiz-Gómez SJ, Rodríguez-González V, Tola-Arribas MÁ, Cano M, Hornero R (2018) Analysis of electroencephalographic dynamic functional connectivity in Alzheimer’s disease. In: World congress on medical physics and biomedical engineering 2019. Springer, Singapore, pp 165–168. https://doi.org/10.1007/978-981-10-9038-7_30

  68. Kabbara A, Paban V, Weill A, Modolo J, Hassan M (2019) Brain network dynamicscorrelates with personality traits. https://doi.org/10.1101/702266 Now published in Brain Connectivity. https://doi.org/10.1089/brain.2019.0723.

  69. Damborská A, Tomescu MI, Honzírková E, Barteček R, Hořínková J, Fedorová S, Michel CM (2019) EEG resting-state large-scale brain network dynamics are related to depressive symptoms. Frontiers Psychiatry 10:548

    Article  Google Scholar 

  70. Wirsich J, Giraud AL, Sadaghiani S (2020) Concurrent EEG-and fMRI-derived functional connectomes exhibit linked dynamics. NeuroImage 219:116998

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digvijay Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, A., Pandey, D. & Khan, A. Application of EEG Time-Varying Networks in the Evaluation of Dynamic Functional Brain Networks. Augment Hum Res 6, 8 (2021). https://doi.org/10.1007/s41133-021-00046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41133-021-00046-2

Keywords

Navigation