Skip to main content
Log in

Reduced left lateralized functional connectivity of the thalamic subregions between short-term and chronic insomnia disorder

  • Original Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

The purpose of the study was to systematically investigate the structural and functional abnormalities in the subregions of the thalamus and to examine their clinical relevance in patients with short-term and chronic insomnia disorder (ID). Thirty-four patients with short-term ID, 41 patients with chronic ID, and 46 healthy controls (HCs) were recruited. Grey matter volume and seed-based resting-state functional connectivity (RSFC) were compared for each thalamic subregion (bilateral cTtha, lPFtha, mPFtha, mPMtha, Otha, Pptha, rTtha, and Stha) between the three groups. Spearman’s correlation was used to estimate the associations between thalamic alterations and clinical variables. Compared with the HCs and chronic ID group, the short-term ID group exhibited lower RSFC of the left cTtha, lPFtha, Otha and Pptha with the bilateral caudate. In addition, the short-term ID group exhibited lower RSFC between the left mPFtha and left caudate in comparison with the other two groups. Convergent RSFC alterations were found in the left cTtha and Otha with the right parahippocampal gyrus in both ID groups. Moreover, a positive correlation was found for the left Otha–caudate RSFC with the Epworth sleepiness scale scores (r = 0.340, P = 0.040). Our findings suggest shared and unique RSFC alterations of certain thalamic subregions with paralimbic regions between short-term and chronic ID. These findings have implications for understanding common and specific pathophysiology of different types of ID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roth T. Comorbid insomnia: current directions and future challenges. Am J Manag Care. 2009;15: s6.

    PubMed  Google Scholar 

  2. Roth T, Roehrs T. Insomnia: epidemiology, characteristics, and consequences. Clin Cornerstone. 2003. https://doi.org/10.1016/s1098-3597(03)90031-7.

    Article  PubMed  Google Scholar 

  3. Baglioni C, Battagliese G, Feige B, Spiegelhalder K, Nissen C, Voderholzer U, et al. Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord. 2011. https://doi.org/10.1016/j.jad.2011.01.011.

    Article  PubMed  Google Scholar 

  4. Taylor DJ, Lichstein KL, Durrence HH, Reidel BW, Bush AJ. Epidemiology of insomnia, depression, and anxiety. Sleep. 2005;28(11):1457–64. https://doi.org/10.1093/sleep/28.11.1457.

    Article  PubMed  Google Scholar 

  5. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3(5 Suppl):S7-10.

    PubMed  PubMed Central  Google Scholar 

  6. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146(5):1387–94. https://doi.org/10.1378/chest.14-0970.

    Article  PubMed  Google Scholar 

  7. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63. https://doi.org/10.1038/nature04284.

    Article  CAS  PubMed  Google Scholar 

  8. Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci. 2018;21(7):974–84. https://doi.org/10.1038/s41593-018-0164-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu CH, Liu CZ, Zhang J, Yuan Z, Tang LR, Tie CL, et al. Reduced spontaneous neuronal activity in the insular cortex and thalamus in healthy adults with insomnia symptoms. Brain Res. 2016;1648(Pt A):317–24. https://doi.org/10.1016/j.brainres.2016.07.024.

    Article  CAS  PubMed  Google Scholar 

  10. Li M, Wang R, Zhao M, Zhai J, Liu B, Yu D, et al. Abnormalities of thalamus volume and resting state functional connectivity in primary insomnia patients. Brain Imaging Behav. 2019;13(5):1193–201. https://doi.org/10.1007/s11682-018-9932-y.

    Article  PubMed  Google Scholar 

  11. Kang JMK, Joo SWJ, Son YDS, Kim HK, Ko KPK, Lee JSL, et al. Low white-matter integrity between the left thalamus and inferior frontal gyrus in patients with insomnia disorder. J Psychiatry Neurosci. 2018;43(6):366–74. https://doi.org/10.1503/jpn.170195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma X, Jiang G, Tian J, Liu M, Fang J, Xu Y, et al. Convergent and divergent functional connectivityalterations of hippocampal subregions between short-term and chronic insomnia disorder. Brain Imaging Behav. 2020. https://doi.org/10.1007/s11682-020-00306-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma X, Fu S, Yin Y, Wu Y, Wang T, Xu G, et al. Aberrant functional connectivity of basal forebrain subregions with cholinergic system in short-term and chronic insomnia disorder. J Affect Disord. 2021;278:481–7. https://doi.org/10.1016/j.jad.2020.09.103 (PubMed PMID: 33011526).

    Article  PubMed  Google Scholar 

  14. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. https://doi.org/10.1016/0165-1781(89)90047-4.

    Article  CAS  PubMed  Google Scholar 

  15. Bastien CH, Vallieres A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307. https://doi.org/10.1016/s1389-9457(00)00065-4.

    Article  PubMed  Google Scholar 

  16. Doneh B. Epworth sleepiness scale. Occup Med (Lond). 2015;65(6):508. https://doi.org/10.1093/occmed/kqv042.

    Article  Google Scholar 

  17. Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9:386. https://doi.org/10.3389/fnhum.2015.00386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35(3):346–55. https://doi.org/10.1002/mrm.1910350312.

    Article  CAS  PubMed  Google Scholar 

  19. Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage. 2013;82:208–25. https://doi.org/10.1016/j.neuroimage.2013.05.116.

    Article  PubMed  Google Scholar 

  20. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex. 2016;26(8):3508–26. https://doi.org/10.1093/cercor/bhw157.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cowan WM, Powell TP. A study of thalamo-striate relations in the monkey. Brain. 1956;79(2):364–90. https://doi.org/10.1093/brain/79.2.364.

    Article  CAS  PubMed  Google Scholar 

  22. de Heras S, Mengual E, Gimenez-Amaya JM. Double retrograde tracer study of the thalamostriatal projections to the cat caudate nucleus. Synapse. 1992;32(2):80–92. https://doi.org/10.1002/(SICI)1098-2396(199905)32:2%3c80::AID-SYN2%3e3.0.CO;2-P.

    Article  Google Scholar 

  23. Erro ME, Lanciego JL, Arribas J, Gimenez-Amaya JM. Striatal input from the ventrobasal complex of the rat thalamus. Histochem Cell Biol. 2001;115(6):447–54. https://doi.org/10.1007/s004180100273.

    Article  CAS  PubMed  Google Scholar 

  24. Kunzle H. Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res. 1977;30(4):481–92. https://doi.org/10.1007/BF00237639.

    Article  CAS  PubMed  Google Scholar 

  25. Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N. Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res. 1990;537(1–2):54–68. https://doi.org/10.1016/0006-8993(90)90339-d.

    Article  CAS  PubMed  Google Scholar 

  26. Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci. 2010;31(3):499–507. https://doi.org/10.1111/j.1460-9568.2009.07062.x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stepanski E, Lamphere J, Badia P, Zorick F, Roth T. Sleep fragmentation and daytime sleepiness. Sleep. 1984;7(1):18–26. https://doi.org/10.1093/sleep/7.1.18.

    Article  CAS  PubMed  Google Scholar 

  28. Bonnet MH, Arand DL. Clinical effects of sleep fragmentation versus sleep deprivation. Sleep Med Rev. 2003;7(4):297–310. https://doi.org/10.1053/smrv.2001.0245.

    Article  PubMed  Google Scholar 

  29. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266–71. https://doi.org/10.1016/0166-2236(90)90107-l.

    Article  CAS  PubMed  Google Scholar 

  30. Haber S, McFarland NR. The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist. 2001;7(4):315–24. https://doi.org/10.1177/107385840100700408.

    Article  CAS  PubMed  Google Scholar 

  31. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81. https://doi.org/10.1146/annurev.ne.09.030186.002041.

    Article  CAS  PubMed  Google Scholar 

  32. Ellis JG, Gehrman P, Espie CA, Riemann D, Perlis ML. Acute insomnia: current conceptualizations and future directions. Sleep Med Rev. 2012;16(1):5–14. https://doi.org/10.1016/j.smrv.2011.02.002.

    Article  PubMed  Google Scholar 

  33. Bubb EJ, Kinnavane L, Aggleton JP. Hippocampal-diencephalic-cingulate networks for memory and emotion: an anatomical guide. Brain Neurosci Adv. 2017. https://doi.org/10.1177/2398212817723443.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Buffalo EA, Ramus SJ, Clark RE, Teng E, Squire LR, Zola SM. Dissociation between the effects of damage to perirhinal cortex and area TE. Learn Mem. 1999;6(6):572–99. https://doi.org/10.1101/lm.6.6.572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci. 1993;13(6):2430–51.

    Article  CAS  Google Scholar 

  36. Zhou F, Huang M, Gu L, Hong S, Jiang J, Zeng X, et al. Regional cerebral hypoperfusion after acute sleep deprivation: a STROBE-compliant study of arterial spin labeling fMRI. Medicine (Baltimore). 2019;98(2): e14008. https://doi.org/10.1097/MD.0000000000014008.

    Article  Google Scholar 

  37. Li Y, Liu L, Wang E, Zhang H, Dou S, Tong L, et al. Abnormal neural network of primary insomnia: evidence from spatial working memory task fMRI. Eur Neurol. 2016;75(1–2):48–57. https://doi.org/10.1159/000443372.

    Article  PubMed  Google Scholar 

  38. Espie CA, Kyle SD, Hames P, Cyhlarova E, Benzeval M. The daytime impact of DSM-5 insomnia disorder: comparative analysis of insomnia subtypes from the Great British Sleep Survey. J Clin Psychiatry. 2012;73(12):e1478–84. https://doi.org/10.4088/JCP.12m07954.

    Article  PubMed  Google Scholar 

  39. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30(10):3127–41. https://doi.org/10.1002/hbm.20737.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients and volunteers for participating in this study. Also, the authors are highly grateful to the anonymous reviewers for their significant and constructive comments and suggestions, which greatly improved the article.

Funding

The study was funded by the National Science Foundation for Young Scientists of China (grant number: 82001792), National Natural Science Foundation of China (grant number: 81771807), the Science and Technology Planning Project of Guangdong Province (grant number: 2017A020215077) and the Science and Technology Program of Guangzhou, China (grant number: 201804010448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhang Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Institutional Review Board of the Guangdong Second Provincial General Hospital, and all participants completed informed written consent prior to their participation in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Fu, S., Xu, G. et al. Reduced left lateralized functional connectivity of the thalamic subregions between short-term and chronic insomnia disorder. Sleep Biol. Rhythms 20, 229–237 (2022). https://doi.org/10.1007/s41105-021-00362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41105-021-00362-5

Keywords

Navigation