Skip to main content
Log in

Utilization of Pinus kesiya and Schima wallichii Biomass-Derived Activated Carbon for Methylene Blue Removal: Adsorption Performance and Mechanistic Insights

  • Research
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

Biomass material offers several advantages to synthesize activated carbon because of its economic viability, renewability, availability, and unique physicochemical properties. This piece of work reports activated carbon prepared from biomass of Pinus kesiya and Schima wallichii via ZnCl2 activation for potential application to remove methylene blue from water. The optimum adsorption parameters—pH, adsorbent dose, and agitation speed—were obtained using Taguchi design of experiment. Experimental equilibrium data of adsorption of methylene blue onto the adsorbents fitted well with Langmuir isotherm with maximum adsorption capacity of 116.28 mg g−1 and 95.24 mg g−1 for Pinus kesiya activated carbon and Schima wallichii activated carbon respectively. The kinetic experimental data followed a pseudo-second-order equation for both the adsorbents. The potential rate-controlling step in the adsorption of methylene blue onto the adsorbents was predominantly intraparticle diffusion with two stages of adsorption for Pinus kesiya activated carbon and three stages of adsorption for Schima wallichii activated carbon. Density functional study investigation suggested that methylene blue adsorption onto activated carbon is predominantly chemisorption, and the presence of a carboxylic acid functional group on the activated carbon surface has a higher methylene blue adsorption affinity with an adsorption energy of −171.85 kJ mol−1 compared to —CHO and —OH functionalized carbon, pristine activated carbon models. Our work indicates that activated carbon derived from Pinus kesiya and Schima wallichii biomass could be an efficient adsorbent to remove methylene blue from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All relevant data are within the paper and its supporting information file.

References

  1. Gupta VK, Kumar R, Nayak A et al (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193–194:24–34. https://doi.org/10.1016/j.cis.2013.03.003

    Article  CAS  Google Scholar 

  2. Vargas AMM, Cazetta AL, Kunita MH et al (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730. https://doi.org/10.1016/j.cej.2011.01.067

    Article  CAS  Google Scholar 

  3. Arora S (2014) Textile dyes: it’s impact on environment and its treatment. J Bioremediation Biodegrad 05:6199. https://doi.org/10.4172/2155-6199.1000e146

    Article  CAS  Google Scholar 

  4. Cengiz S, Cavas L (2008) Removal of methylene blue by invasive marine seaweed : Caulerpa racemosa var. cylindracea. Bioresour Technol 99:2357–2363. https://doi.org/10.1016/j.biortech.2007.05.011

    Article  CAS  Google Scholar 

  5. Tan IAW, Hameed BH, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127:111–119. https://doi.org/10.1016/j.cej.2006.09.010

    Article  CAS  Google Scholar 

  6. El-latif MMA, Ibrahim AM (2010) Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J Am Sci 6:267–283

    Google Scholar 

  7. Üner O, Geçgel Ü, Bayrak Y (2016) Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut 227:247. https://doi.org/10.1007/s11270-016-2949-1

    Article  CAS  Google Scholar 

  8. Mousavi SA, Shahbazi D, Mahmoudi A, Darvishi P (2022) Methylene blue removal using prepared activated carbon from grape wood wastes: adsorption process analysis and modeling. Water Qual Res J 57:1–19. https://doi.org/10.2166/wqrj.2021.015

    Article  CAS  Google Scholar 

  9. UN SDG (2022) Water and sanitation - United Nations Sustainable Development. United Nations Sustain. Dev https://www.un.org/sustainabledevelopment/water-and-sanitation/. Accessed 3 Feb 2023

    Google Scholar 

  10. Zhou L, Huang J, He B et al (2014) Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohydr Polym 101:574–581. https://doi.org/10.1016/j.carbpol.2013.09.093

    Article  CAS  Google Scholar 

  11. Li D, Yan J, Liu Z, Liu Z (2016) Adsorption kinetic studies for removal of methylene blue using activated carbon prepared from sugar beet pulp. Int J Environ Sci Technol 13:1815–1822. https://doi.org/10.1007/s13762-016-1012-5

    Article  CAS  Google Scholar 

  12. Deng H, Lu J, Li G et al (2011) Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem Eng J 172:326–334. https://doi.org/10.1016/j.cej.2011.06.013

    Article  CAS  Google Scholar 

  13. Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal. J Hazard Mater 177:300–306. https://doi.org/10.1016/j.jhazmat.2009.12.032

    Article  CAS  Google Scholar 

  14. Liou T (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158:129–142. https://doi.org/10.1016/j.cej.2009.12.016

    Article  CAS  Google Scholar 

  15. Gundogdu A, Duran C, Senturk HB et al (2012) Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. J Chem Eng Data 57:2733–2743. https://doi.org/10.1021/je300597u

    Article  CAS  Google Scholar 

  16. Ketcha JM, Dina DJD, Ngomo HM, Ndi NJ (2012) Preparation and characterization of activated carbons obtained from maize cobs by zinc chloride activation. Am Chem Sci J 2:136–160. https://doi.org/10.9734/acsj

    Article  CAS  Google Scholar 

  17. Pandian P, Arivoli S, Marimuthu V et al (2013) Adsorption of Cu ( II ) Ions from aqueous solution by activated ipomoea carnea : equilibrium isotherms and kinetic approach. Adsorption 3:156–162

    Google Scholar 

  18. Angin D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549. https://doi.org/10.1016/j.biortech.2013.08.164

    Article  CAS  Google Scholar 

  19. Ozdemir I, Şahin M, Orhan R, Erdem M (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process Technol 125:200–206. https://doi.org/10.1016/j.fuproc.2014.04.002

    Article  CAS  Google Scholar 

  20. Kumar A, Jena HM (2015) High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci 356:753–761. https://doi.org/10.1016/j.apsusc.2015.08.074

    Article  CAS  Google Scholar 

  21. Ghaedi M, Kokhdan SN (2015) Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology. Spectrochim Acta Part A Mol Biomol Spectrosc 136:141–148. https://doi.org/10.1016/j.saa.2014.07.048

    Article  CAS  Google Scholar 

  22. Wanassi B, Ben HI, Ghimbeu CM et al (2017) Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Environ Sci Pollut Res 24:10041–10055. https://doi.org/10.1007/s11356-017-8410-1

    Article  CAS  Google Scholar 

  23. Banerjee S, Chattopadhyaya MC (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005

    Article  CAS  Google Scholar 

  24. Shoukat S, Bhatti HN, Iqbal M, Noreen S (2017) Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous Mesoporous Mater 239:180–189. https://doi.org/10.1016/j.micromeso.2016.10.004

    Article  CAS  Google Scholar 

  25. Misran E, Bani O, Situmeang EM, Purba AS (2018) Removal efficiency of methylene blue using activated carbon from waste banana stem: study on pH influence. IOP Conf Ser Earth Environ Sci 122:012085. https://doi.org/10.1088/1755-1315/122/1/012085

    Article  Google Scholar 

  26. Ghosh RK, Ray DP, Debnath S et al (2019) Optimization of process parameters for methylene blue removal by jute stick using response surface methodology. Environ Prog Sustain Energy 38:13146. https://doi.org/10.1002/ep.13146

    Article  CAS  Google Scholar 

  27. Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surf Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012

    Article  CAS  Google Scholar 

  28. Sabela MI, Kunene K, Kanchi S et al (2019) Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: an approach to equilibrium and kinetic study. Arab J Chem 12:4331–4339. https://doi.org/10.1016/j.arabjc.2016.06.001

  29. Medhat A, El-Maghrabi HH, Abdelghany A et al (2021) Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv 3:100037. https://doi.org/10.1016/j.apsadv.2020.100037

    Article  Google Scholar 

  30. Hoc Thang N, Sy Khang D, Duy Hai T et al (2021) Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Adv 11:26563–26570. https://doi.org/10.1039/d1ra04672a

    Article  CAS  Google Scholar 

  31. Zeng F, Meng Z, Xu Z et al (2023) Biomass-derived porous activated carbon for ultra-high performance supercapacitor applications and high flux removal of pollutants from water. Ceram Int 49:15377–15386. https://doi.org/10.1016/J.CERAMINT.2023.01.122

    Article  CAS  Google Scholar 

  32. Farjon A (2013) Pinus kesiya. The IUCN Red List of Threatened Species 2013: e.T42372A2975925. 8235. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42372A2975925.en

  33. Aksakal O, Ucun H (2010) Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J Hazard Mater 181:666–672. https://doi.org/10.1016/j.jhazmat.2010.05.064

    Article  CAS  Google Scholar 

  34. Sen TK, Afroze S, Ang HM (2011) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut 218:499–515. https://doi.org/10.1007/s11270-010-0663-y

    Article  CAS  Google Scholar 

  35. Oldfield S (2018) Schima wallichii. The IUCN Red List of Threatened Species 2018

  36. Orwa C, Mutua A, Kindt R, et al. (2009) Schima wallichii. Agroforestry database: a tree reference and selection guide version 4.0

  37. Bhomick PC, Supong A, Baruah M et al (2020) Alizarin red S adsorption onto biomass-based activated carbon: optimization of adsorption process parameters using Taguchi experimental design. Int J Environ Sci Technol 17:1137–1148. https://doi.org/10.1007/s13762-019-02389-1

    Article  CAS  Google Scholar 

  38. Bhomick PC, Supong A, Baruah M et al (2018) Pine cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: isotherm, kinetic, thermodynamic and regeneration studies. Sustain Chem Pharm 10:41–49. https://doi.org/10.1016/j.scp.2018.09.001

    Article  Google Scholar 

  39. Cam LM, Van Khu L, Ha NN (2013) Theoretical study on the adsorption of phenol on activated carbon using density functional theory. J Mol Model 19:4395–4402. https://doi.org/10.1007/s00894-013-1950-5

    Article  CAS  Google Scholar 

  40. Cortés-Arriagada D, Sanhueza L, Santander-Nelli M (2013) Modeling the physisorption of bisphenol A on graphene and graphene oxide. J Mol Model 19:3569–3580. https://doi.org/10.1007/s00894-013-1872-2

    Article  CAS  Google Scholar 

  41. de Souza TNV, de Carvalho SML, Vieira MGA et al (2018) Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. Appl Surf Sci 448:662–670. https://doi.org/10.1016/j.apsusc.2018.04.087

    Article  CAS  Google Scholar 

  42. Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier Science & Technology Books

    Book  Google Scholar 

  43. Bedin KC, Martins AC, Cazetta AL et al (2016) KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem Eng J 286:476–484. https://doi.org/10.1016/j.cej.2015.10.099

    Article  CAS  Google Scholar 

  44. Hinkelmann K, Kempthorne O (2005) Design and analysis of experiments, First edn. John Wiley & Sons, Inc., New Jersey

    Book  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian Inc Wallingford CT Wallingford CT

    Google Scholar 

  46. Ezung SL, Baruah M, Supong A et al (2022) Experimental and theoretical insight into the adsorption of 2,4-dichlorophenol on low-cost bamboo sheath activated carbon. Sustain Chem Pharm 26:100643. https://doi.org/10.1016/j.scp.2022.100643

    Article  CAS  Google Scholar 

  47. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  48. Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245. https://doi.org/10.1016/0301-0104(82)85072-6

    Article  CAS  Google Scholar 

  49. Pascual-ahuir JL, Silla E, Tuñon I (1994) GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J Comput Chem 15:1127–1138. https://doi.org/10.1002/jcc.540151009

    Article  CAS  Google Scholar 

  50. Perry ST, Hambly EM, Fletcher TH et al (2000) Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. Proc Combust Inst 28:2313–2319. https://doi.org/10.1016/S0082-0784(00)80642-6

    Article  CAS  Google Scholar 

  51. Supong A, Bhomick PC, Baruah M et al (2019) Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustain Chem Pharm 13:100159. https://doi.org/10.1016/j.scp.2019.100159

    Article  Google Scholar 

  52. Shen F, Liu J, Zhang Z et al (2018) Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process Technol 171:258–264. https://doi.org/10.1016/j.fuproc.2017.11.026

    Article  CAS  Google Scholar 

  53. Liu J, Qu W, Zheng C (2013) Theoretical studies of mercury-bromine species adsorption mechanism on carbonaceous surface. Proc Combust Inst 34:2811–2819. https://doi.org/10.1016/j.proci.2012.07.028

    Article  CAS  Google Scholar 

  54. Liu J, Qu W, Joo SW, Zheng C (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167. https://doi.org/10.1016/j.cej.2012.01.023

    Article  CAS  Google Scholar 

  55. Padak B, Wilcox J (2009) Understanding mercury binding on activated carbon. Carbon N Y 47:2855–2864. https://doi.org/10.1016/j.carbon.2009.06.029

    Article  CAS  Google Scholar 

  56. Bhomick PC, Supong A, Karmaker R et al (2019) Activated carbon synthesized from biomass material using single-step KOH activation for adsorption of fluoride: experimental and theoretical investigation. Korean J Chem Eng 36:551–562. https://doi.org/10.1007/s11814-019-0234-x

    Article  CAS  Google Scholar 

  57. Yin Q, Si L, Wang R et al (2022) Influence of the defect of carbonaceous surface on ammonium adsorption: a DFT study. Fuel 325:124873. https://doi.org/10.1016/j.fuel.2022.124873

    Article  CAS  Google Scholar 

  58. Khuri AI (2006) Response surface methodology and related topics, first edn. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  Google Scholar 

  59. Gautam RK, Gautam PK, Chattopadhyaya MC, Pandey JD (2014) Adsorption of alizarin red S onto biosorbent of Lantana camara: kinetic, equilibrium modeling and thermodynamic studies. Proc Natl Acad Sci India Sect A - Phys Sci 84:495–504. https://doi.org/10.1007/s40010-014-0154-4

    Article  CAS  Google Scholar 

  60. Kuśmierek K, Świątkowski A (2015) The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. React Kinet Mech Catal 116:261–271. https://doi.org/10.1007/s11144-015-0889-1

    Article  CAS  Google Scholar 

  61. Kaur S, Rani S, Mahajan RK et al (2015) Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: kinetics, equilibrium, and thermodynamics. J Ind Eng Chem 22:19–27. https://doi.org/10.1016/j.jiec.2014.06.019

    Article  CAS  Google Scholar 

  62. Garg D (2012) Adsorptive removal of dyes from aqueous solution. National Institute of Technology, Rourkela

    Google Scholar 

  63. Gialamouidis D, Mitrakas M, Liakopoulou-Kyriakides M (2010) Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. J Hazard Mater 182:672–680. https://doi.org/10.1016/j.jhazmat.2010.06.084

    Article  CAS  Google Scholar 

  64. Daifullah AAM, Yakout SM, Elreefy SA (2007) Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147:633–643. https://doi.org/10.1016/j.jhazmat.2007.01.062

    Article  CAS  Google Scholar 

  65. Theydan SK, Ahmed MJ (2012) Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies. J Anal Appl Pyrolysis 97:116–122. https://doi.org/10.1016/j.jaap.2012.05.008

    Article  CAS  Google Scholar 

  66. Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8. https://doi.org/10.1016/j.cej.2009.04.042

    Article  CAS  Google Scholar 

  67. Kumar S, Sharma S, Karmaker R, Sinha D (2021) DFT study on the structural, optical and electronic properties of platinum group doped graphene. Mater Today Commun 26:101755. https://doi.org/10.1016/j.mtcomm.2020.101755

    Article  CAS  Google Scholar 

  68. Takam B, Acayanka E, Kamgang GY et al (2017) Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution. Environ Sci Pollut Res 24:16958–16970. https://doi.org/10.1007/s11356-017-9328-3

    Article  CAS  Google Scholar 

  69. Liu L, Lin Y, Liu Y et al (2013) Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics. J Chem Eng Data 58:2248–2253. https://doi.org/10.1021/je4003543

    Article  CAS  Google Scholar 

  70. Yağmur HK, Kaya İ (2021) Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J Mol Struct 1232. https://doi.org/10.1016/j.molstruc.2021.130071

  71. Wong KT, Eu NC, Ibrahim S et al (2015) Recyclable magnetite-loaded palm shell-waste based activated carbon for the effective removal of methylene blue from aqueous solution. J Clean Prod 115:337–342. https://doi.org/10.1016/j.jclepro.2015.12.063

    Article  CAS  Google Scholar 

  72. Albadarin AB, Mangwandi C (2015) Mechanisms of alizarin red S and methylene blue biosorption onto olive stone by-product: isotherm study in single and binary systems. J Environ Manage 164:86–93. https://doi.org/10.1016/j.jenvman.2015.08.040

    Article  CAS  Google Scholar 

  73. Amuda OS, Olayiwola AO, Alade AO (2014) Adsorption of methylene blue from aqueous solution using steam-activated carbon produced from Lantana camara stem. J Environ Prot (Irvine, Calif) 5:1352–1363

    Article  CAS  Google Scholar 

  74. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution. J Hazard Mater 166:1514–1521. https://doi.org/10.1016/j.jhazmat.2008.12.080

    Article  CAS  Google Scholar 

  75. Chang J, Ma J, Ma Q et al (2015) Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl Clay Sci 119:132–140. https://doi.org/10.1016/j.clay.2015.06.038

    Article  CAS  Google Scholar 

  76. Etim UJ, Umoren SA, Eduok UM (2016) Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc 20:S67–S76. https://doi.org/10.1016/j.jscs.2012.09.014

    Article  CAS  Google Scholar 

  77. Aygün A, Yenisoy-Karakaş S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66:189–195. https://doi.org/10.1016/j.micromeso.2003.08.028

    Article  CAS  Google Scholar 

  78. Dos Santos KJL, Dos Santos GEDS, de Sá ÍMGL, Ide AH, da Silva Duarte JL, de Carvalho SHV, Soletti JI, Meili L (2019) Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour Technol 293:122093. https://doi.org/10.1016/j.biortech.2019.122093

    Article  CAS  Google Scholar 

  79. Danish M, Ahmad T, Nadhari WNAW et al (2018) Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment. Appl Water Sci 8:1–11. https://doi.org/10.1007/s13201-018-0644-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors Parimal Chandra Bhomick, Aola Supong, and Suraj Kumar are grateful to DST-INSPIRE Fellowship for the financial assistance. The authors are also grateful to Cintia Karina Rojas Mayorga, Universidad de Colima, Facultad de Ciencias Quimicas, Mexico for helping out in isotherm modeling and calculations.

Funding

PCB, AS, and SK received DST-INSPIRE Fellowship as Ph.D. Financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

PCB: conceptualization, investigation, methodology, data interpretation, and analysis, writing—original draft. AS: writing—review and editing, methodology; SK: DFT calculations analysis, writing, review, and editing. AIS; writing—review and editing. TM: writing—review and editing. DS: writing—review and editing, conceptualization, resources, supervision.

Corresponding author

Correspondence to Parimal Chandra Bhomick.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1847 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhomick, P.C., Supong, A., Kumar, S. et al. Utilization of Pinus kesiya and Schima wallichii Biomass-Derived Activated Carbon for Methylene Blue Removal: Adsorption Performance and Mechanistic Insights. Water Conserv Sci Eng 8, 48 (2023). https://doi.org/10.1007/s41101-023-00220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-023-00220-0

Keywords

Navigation