Skip to main content
Log in

(M, MAP)/(PH, PH)/1 Queue with Non-preemptive Priority and Working Vacation Under N-Policy

  • Research article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

In this paper we consider two single server queueing models with non-preemptive priority and working vacation under two distinct N-policies. High priority (type I) customers are served even in vacation mode whereas low priority (type II) customers are served only when the server comes to normal mode of service. Type I customers have only a limited waiting space L whereas type II customers have unlimited capacity. The two distinct N-policies are as described below: In model I, while service of type I customers are in progress in vacation mode (working vacation), if the number of such customers present in the system hits N (\(\le L\)) or the vacation timer (clock) expires, whichever occurs first, the server is switched on to normal mode. In model II, switching the server to normal mode from vacation mode occurs as soon as the accumulated number (those served out plus those present in the system) of type I customers during that working vacation hits N or the vacation timer expires, whichever occurs first. Type I customers arrive according to a Poisson process whereas type II customer’s arrival is governed by Markovian Arrival Process. Service time of type I and type II customers follow distinct phase type distributions. At a service completion epoch, finding the system empty, server takes an exponentially distributed working vacation. During working vacation, type I customers are served at a reduced rate. On vacation expiration, the service of the type I customer already in service, will start from the beginning in the normal mode of service. We analyze these models in steady state to compute the distribution of duration of service time continuously in slow mode, expected number of returns to 0 type I customer state, starting from 0 type I customer state during vacation mode of service before the arrival of a type II customer, the distribution of a p-cycle in normal mode, LSTs of busy cycle, busy period of type I customers generated during the service time of a type II customer and LSTs of waiting time distributions of type I and type II customers. We compare these models in steady state by numerical experiments to identify the superior model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Breuer L, Baum D (2005) An introduction to queueing theory and matrix-analytic methods. Springer, New York

    MATH  Google Scholar 

  • Doshi BT (1986) Queueing systems with vacations—a survey. Queueing Syst 1:29–66

    Article  MathSciNet  Google Scholar 

  • Goswami C, Selvaraju N (2013) A working vacaton queue with priority customers and vacation interruptions. Int J Oper Res 17(3):311–332

    Article  MathSciNet  Google Scholar 

  • Kasahara S, Takine T, Takahashi Y, Hasegawa T (1996) MAP/G/1 queues under N-policy with and without vacations. J Oper Res Soc Jpn 39(2):188–212

    Article  MathSciNet  Google Scholar 

  • Kim JD, Choi DW, Chae KC (2003) Analysis of queue-length distribution of the M/G/1 queue with working vacations. In: International conference on statistics and related fields, Hawaii

  • Lee HW, Lee SS, Park JO, Chae KC (1994) Analysis of the $M^X/G/1$ queue with N-policy and multiple vacations. J Appl Prob 31:476–496

    MathSciNet  MATH  Google Scholar 

  • Levi Y, Yechiali U (1975) Utilization of idle time in an M/G/1 queueing system. Manag Sci 22:202–211

    Article  Google Scholar 

  • Li J, Tian N (2007) The M/M/1 queue with working vacations and vacation interruptions. J Sci Syst Eng 16(1):121–127

    Article  Google Scholar 

  • Li J, Tian N, Ma ZY (2008) Performance Analysis of GI/M/1 queue with working vacations and vacation interruption. Appl Math Modell 32(12):2715–2730

    Article  MathSciNet  Google Scholar 

  • Neuts MF (1981) Matrix geometric solutions in stochastic models: an algorithmic approach. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Servi LD, Finn SG (2002) M/M/1 queues with working vacations (M/M/1/WV). Perform Eval 50:41–52

    Article  Google Scholar 

  • Sreenivasan C, Chakravarthy SR, Krishnamoorthy A (2013) MAP/PH/1 Queue with working vacations, vacation interruptions and N-Policy. Appl Math Modell 37(6):3879–3893

    Article  MathSciNet  Google Scholar 

  • Takagi H (1991) Queueing analysis: vacation and priority systems, part 1, vol I. North Holland, Amsterdam

    MATH  Google Scholar 

  • Tian N, Zhang ZG (2006) Vacation queueing models, theory and applications. Springer, New York

    Book  Google Scholar 

  • Wu D, Takagi H (2006) M/G/1 queue with multiple working vacations. Perform Eval 63:654–681

    Article  Google Scholar 

  • Yadin M, Naor P (1963) Queueing systems with a removable server. Oper Res 14:393–405

    Article  Google Scholar 

  • Zhang M, Hou Z (2011) Performance analysis of MAP/G/1 queue with working vacations and vacation interruption. Appl Math Modell 35:1551–1560

    Article  MathSciNet  Google Scholar 

Download references

Funding

A. Krishnamoorthy: Emeritus Fellow (EMERITUS-2017-18 GEN 10822(SA-II)), University Grants Commission, India; V. Divya: Research is supported by the University Grants Commission, Govt. of India, under Faculty Development Programme (Grant No.F.No.FIP/12th Plan/KLKE008 TF 04) in Department of Mathematics, Cochin University of Science and Technology, Cochin-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krishnamoorthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 The Entries in the Block Matrices of the Infinitesimal Generator of the QBD in Model I

Define the entries of \(B_{0_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}\) as transition submatrices which contains transitions of the form \((0,i_1,j_1,k_1,l_1) \rightarrow (0,i_2,j_2,k_2,l_2).\) Since none or one event alone could take place in a short interval of time with positive probability, in general, a transition such as \((i_1,i_2,j,k,l)\rightarrow (i_1',i_2',j',k',l')\) has positive rate only for exactly one of \(i_1',i_2',j',k',l'\) different from \(i_1,i_2,j,k,l\).

$$ \begin{aligned} B_{0_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}=\left\{ \begin{array}{ll} \lambda ({\varvec{\alpha} }\ \otimes I_n)&\quad i_1=0,i_2=1;j_1=j_2=0;1\le k_2\le m, \\ &\quad 1\le l_1,l_2 \le n\\ \lambda I_{mn}&\quad 1 \le i_1 \le N-2, i_2=i_1+1;j_1=j_2=0;\\ &\quad 1\le k_1,k_2\le m;1\le l_1,l_2 \le n\\ \lambda {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &\quad i_1=N-1,i_2=N;j_1=0,j_2=1; 1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2\le n\\ \lambda I_{mn} &\quad 1\le i_1\le L-1, i_2=i_1+1;j_1=j_2=1;\\ &\quad 1 \le k_1,k_2 \le m;1\le l_1,l_2\le n\\ \theta {\textbf{T}}^0 \otimes I_n &\quad i_1=1,i_2=0;j_1=0,j_2=0;1 \le k_1\le m;\\ &\quad 1\le l_1,l_2\le n\\ {\textbf{T}}^0 \otimes I_n &\quad i_1=1,i_2=0;j_1=1,j_2=0;1 \le k_1\le m; \\ &\quad 1\le l_1,l_2\le n\\ \theta {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n&\quad 2\le i_1\le N-1, i_2=i_1-1;j_1=0,j_2=0;\\ &\quad 1 \le k_1,k_2 \le m;1\le l_1,l_2 \le n\\ {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n &\quad 2\le i_1 \le L,i_2=i_1-1 ;j_1=j_2=1;1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2\le n\\ \eta {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &\quad 1\le i_1\le N-1,i_2=i_1;j_1=0,j_2=1; \\ &\quad 1\le k_1,k_2\le m; 1\le l_1,l_2\le n\\ D_0-\lambda I_n &\quad i_1=i_2=0;j_1=j_2=0; 1\le l_1,l_2\le n\\ \theta T \oplus D_0-(\lambda +\eta )I_{mn}&\quad 1\le i_1\le N-1, i_2=i_1;j_1=j_2=0;1 \le k_1,k_2 \le m; \\ &\quad 1\le l_1,l_2 \le n\\ T \oplus D_0-\lambda I_{mn} &\quad 1\le i_1\le L-1,i_2=i_1; j_1=j_2=1;1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2\le n\\ T\oplus D_0&\quad i_1=i_2=L;j_1=j_2=1;1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2 \le n\\ \end{array} \right. \end{aligned}$$

Define the entries of \(C_{0_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}\) as transition submatrices which contains transitions of the form \((0,i_1,j_1,k_1,l_1) \rightarrow (1,i_2,j_2,k_2,l_2)\)

$$ \begin{aligned} C_{0_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}=\left\{ \begin{array}{ll} D_1 &{}\quad i_1=0,i_2=0; j_1=j_2=0;1\le l_1,l_2\le n\\ I_m \otimes D_1&{}\quad 1\le i_1\le N-1,i_2=i_1;j_1=j_2=0;1 \le k_1,k_2,\le m; 1\le l_1,l_2 \le n\\ I_m \otimes D_1&{}\quad 1\le i_1\le L, i_2=i_1;j_1=j_2=1;1 \le k_1,k_2 \le m;1\le l_1,l_2 \le n \end{array} \right. \end{aligned}$$

Define the entries of \(B_{1_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}\) as transition submatrices which contains transitions of the form \((1,i_1,j_1,k_1,l_1) \rightarrow (0,i_2,j_2,k_2,l_2)\).

$$ \begin{aligned} B_{1_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}=\left\{ \begin{array}{ll} {\textbf{T}'}^0\otimes I_n&{}\quad i_1=i_2=0 ; j_1=2,j_2=0;1 \le k_1\le m'; 1\le l_1,l_2\le n\\ {\textbf{T}'}^0 {\varvec{\alpha} } \otimes I_n&{}\quad 1\le i_1\le L,i_2=i_1;j_1=2,j_2=1;1 \le k_1 \le m', 1 \le k_2 \le m; \\ &{}\quad 1\le l_1,l_2\le n \end{array} \right. \end{aligned}$$

Define the entries of \(A_{2_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}\) as transition submatrices which contains transitions of the form \((h,i_1,j_1,k_1,l_1) \rightarrow (h-1,i_2,j_2,k_2,l_2)\), where \(h> 1\).

$$ \begin{aligned} A_{2_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}=\left\{ \begin{array}{ll} {\textbf{T}'}^0 {\varvec{\alpha} '} \otimes I_n&{}\quad i_1=i_2=0;j_1=j_2=2;1 \le k_1,k_2\le m';1\le l_1,l_2 \le n\\ {\textbf{T}'}^0 {\varvec{\alpha} } \otimes I_n &{}\quad 1\le i_1\le L,i_2=i_1;j_1=2,j_2=1; 1 \le k_1\le m', 1\le k_2\le m;\\ {} &{}\quad 1\le l_1,l_2\le n \end{array} \right. \end{aligned}$$

Define the entries of \(A_{1_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}\) as transition submatrices which contains transitions of the form \((h,i_1,j_1,k_1,l_1) \rightarrow (h,i_2,j_2,k_2,l_2)\), where \(h\ge 1\).

$$ \begin{aligned} A_{1_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}=\left\{ \begin{array}{ll} \lambda ({\varvec{\alpha} }\ \otimes I_n)&\quad i_1=0,i_2=1;\,j_1=j_2=0;\,1\le k_2\le m;\,\, 1\le l_1,l_2\le n\\ \lambda I_{mn}&\quad i_1=0,i_2=1;\,j_1=j_2=2;\,1\le k_1,k_2\le m';\\ &\quad 1\le l_1,l_2 \le n\\ \lambda I_{mn},\,&\quad 1\le i_1 \le N-2;\,i_2=i_1+1;\,j_1=j_2=0;\,1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2 \le n\\ \lambda {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &\quad i_1=N-1,i_2=N;\,j_1=0,j_2=1;\,1 \le k_1,k_2\le m;\\ &\quad 1\le l_1,l_2 \le n\\ \lambda I_{mn} &\quad 1\le i_1 \le L-1,i_2=i_1+1;\,j_1=j_2=1;\,1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2\le n\\ \lambda I_{mn} &\quad 1\le i_1\le L-1,i_2=i_1+1;\,j_1=j_2=2;\,1 \le k_1,k_2\le m'; \\ &\quad 1\le l_1,l_2\le n\\ \theta {\textbf{T}}^0 \otimes I_n&\quad i_1=1,i_2=0;\, j_1=j_2=0;\,1\le k_1\le m;\\ &\quad 1\le l_1,l_2\le n\\ {\textbf{T}}^0 {\varvec{\alpha} '} \otimes I_n&\quad i_1=1,i_2=0;\,j_1=1,j_2=2;\, 1\le k_1\le m, 1\le k_2\le m'; \\ &\quad 1\le l_1,l_2\le n\\ \theta {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n &\quad 2\le i_1 \le N-1,i_2=i_1-1;\,j_1=j_2=0;\, 1 \le k_1,k_2\le m; \\ &\quad 1\le l_1,l_2 \le n\\ {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n &\quad 2\le i_1 \le L, i_2=i_1-1;\,j_1=j_2=1;\,1 \le k_1,k_2\le m;\\ &\quad 1\le l_1,l_2 \le n\\ \eta ({\varvec{\alpha} '} \otimes I_n)&\quad i_1=i_2=0;\,j_1=0,j_2=2;\,1\le k_2\le m'; 1\le l_1,l_2\le n\\ \eta {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &\quad 1\le i_1\le N-1,i_2=i_1;\,j_1=0,j_2=1;\,1\le k_1,k_2\le m;\\ &\quad 1\le l_1,l_2\le n\\ D_0-(\lambda +\eta ) I_n &\quad i_1=i_2=0;\,j_1=j_2=0;\,1\le l_1,l_2\le n\\ T' \oplus D_0-\lambda I_{mn}&\quad i_1=i_2=0;j_1=j_2=2;\,1\le k_1,k_2\le m';\, 1\le l_1,l_2\le n\\ \theta T \oplus D_0-(\lambda +\eta )I_{mn}&\quad 1\le i_1\le N-1,i_2=i_1;\,j_1=j_2=0;\, 1 \le k_1,k_2 \le m;\\ &\quad 1\le l_1,l_2\le n\\ T \oplus D_0-\lambda I_{mn}&\quad 1\le i_1\le L-1, i_2=i_1;\,j_1=j_2=1;\,1 \le k_1,k_2\le m;\\ &\quad 1\le l_1,l_2 \le n\\ T' \oplus D_0-\lambda I_{mn}&\quad 1\le i_1\le L-1, i_2=i_1;\,j_1=j_2=2;\,1 \le k_1,k_2 \le m';\\ &\quad 1\le l_1,l_2\le n\\ T\oplus D_0&\quad i_1=i_2=L;\,j_1=j_2=1;\,1 \le k_1,k_2\le m; 1\le l_1,l_2 \le n\\ T'\oplus D_0&\quad i_1=i_2=L;\,j_1=j_2=2;\,1 \le k_1,k_2 \le m'; 1\le l_1,l_2\le n \end{array} \right. \end{aligned}$$

Define the entries of \(A_{0_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}\) as transition submatrices which contains transitions of the form \((h,i_1,j_1,k_1,l_1) \rightarrow (h+1,i_2,j_2,k_2,l_2)\), where \(h\ge 1\).

$$ \begin{aligned} A_{0_{(i_1,j_1,k_1,l_1)}}^{(i_2,j_2,k_2,l_2)}=\left\{ \begin{array}{ll} D_1 &{}\quad i_1=i_2=0;\,j_1=j_2=0;\,1\le l_1,l_2\le n\\ I_m \otimes D_1 &{}\quad i_1=i_2=0;\,j_1=j_2=2;\,1 \le k_1,k_2\le m';\, 1\le l_1,l_2 \le n\\ I_m \otimes D_1 &{}\quad 1\le i_1\le N-1,i_2=i_1;\,j_1=j_2=0;\,1 \le k_1,k_2\le m; \\ &{}\quad 1\le l_1,l_2\le n\\ I_m \otimes D_1 &{}\quad 1\le i_1\le L,i_2=i_1;\,j_1=j_2=1;\,1 \le k_1,k_2 \le m;\\ &{}\quad 1\le l_1,l_2\le n\\ I_m \otimes D_1&{}\quad 1\le i_1\le L,i_2=i_1;\,j_1=j_2=2;\,1 \le k_1,k_2 \le m';\,\\ &{}\quad 1\le l_1,l_2 \le n \end{array} \right. \end{aligned}$$

1.2 Proof of Theorem 3.1

Proof

Let \(B_{c_L}\) denote the length of the busy cycle generated by type I customers arriving during the service time of a type II customer , \(\hat{B_{c_L}}(s)\) the LST of the length of the busy cycle and l the number of type I customers that arrive during service time of type II customer.

Then \(B_{c_L}=X+B_L^1+\cdots B_L^l\) where X denote the service time of the type II customer in service, \(B_L^j\) the busy period generated by jth type I customer that arrive during X, where \(1\le j\le l\).

$$ \begin{aligned} \begin{array}{lcl} \displaystyle \hat{B_{c_L}}(s)&{}=\displaystyle &{}E(e^{-sB_{c_L}}) \\ \displaystyle &=&\int _{x=0}^{\infty } E(e^{-sB_{c_L}}/X=x)P(x\le X<x+dx)\\ \displaystyle &=& \int _{x=0}^{\infty }\sum _{p=0}^{\infty }E(e^{-sB_{c_L}}/X=x,l=p)P(l=p/X=x)P(x\le X <x+dx)\\ \displaystyle &=& \int _{x=0}^{\infty }\sum _{p=0}^{\infty }E(e^{-sB_{c_L}}/X=x,l=p)\frac{e^{-\lambda x}(\lambda x)^p}{p!}{\varvec{\alpha} '} e^{T'x}{\textbf{T}'}^0 dx\\ \displaystyle &=& \int _{x=0}^{\infty }e^{-(s+\lambda )x} {\varvec{\alpha} '} e^{T'x}{\textbf{T}'}^0dx+\int _{x=0}^{\infty }\sum _{p=1}^{L-1} e^{-sx}{\varvec{\gamma} _p}(sI-T_1)^{-1}{\textbf{T}_1}^0\frac{e^{-\lambda x}(\lambda x)^p}{p!}\\ \displaystyle &{} &{} \times \, {\varvec{\alpha} '} e^{T'x}{\textbf{T}'}^0 dx+\int _{x=0}^{\infty }\sum _{p=L}^{\infty } e^{-sx}{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0\frac{e^{-\lambda x}(\lambda x)^p}{p!}{\varvec{\alpha} '} e^{T'x}{\textbf{T}'}^0 dx\\ &=& \alpha '[(s+\lambda )I-T']^{-1}{\textbf{T}'}^0+\sum _{p=1}^{L-1} {\varvec{\gamma} _p}(sI-T_1)^{-1}{\textbf{T}_1}^0\frac{\lambda ^p{\varvec{\alpha} '}}{p!}\\ &{}&{} \displaystyle \times \,\int _{x=0}^{\infty }x^pe^{-[(s+\lambda )I-T']x}{\textbf{T}'}^0dx\\ \displaystyle &{} &{} +\,\sum _{p=L}^{\infty }{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0 \frac{\lambda ^p}{p!}{\varvec{\alpha} '} \int _{x=0}^{\infty }x^p e^{[-(s+\lambda )I-T'])x}{\textbf{T}'}^0dx \end{array} \end{aligned}$$
(25)

We have,

$$\begin{aligned} \displaystyle \int _{x=0}^{\infty }x^pe^{-[(s+\lambda )I-T']x}dx=\frac{p!}{[(s+\lambda )I-T']^{p+1}} \end{aligned}$$
(26)

Substituting (26) in (25) , its third term

$$ \begin{aligned} \begin{array}{lcl} &=&\sum _{p=L}^{\infty }{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0\lambda ^p {\varvec{\alpha} '} [(s+\lambda )I-T']^{-(p+1)}{\textbf{T}'}^0\\ &=&{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0{\varvec{\alpha} '}\sum _{p=L}^{\infty } \left[ \lambda ^{-1}[(s+\lambda )I-T']\right] ^{-p}[(s+\lambda )I-T']^{-1}{\textbf{T}'}^0\\ &=&{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0{\varvec{\alpha} '} \left[ \lambda ^{-1}[(s+\lambda )I-T']\right] ^{-L}\sum _{q=0}^{\infty }\left[ \lambda ^{-1}[(s+\lambda )I-T']\right] ^{-q}[(s +\lambda )I-T']^{-1}{\textbf{T}'}^0\\ &=&{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0{\varvec{\alpha} '} \left[ \lambda ^{-1}[(s+\lambda )I-T']\right] ^{-L}[I-\lambda [(s+\lambda )I-T']^{-1}]^{-1}[(s+\lambda )I-T']^{-1}{\textbf{T}'}^0 \end{array} \end{aligned}$$
(27)

Substituting (27) in (25) gives

$$ \begin{aligned} \hat{B_{c_L}}(s)&={\varvec{\alpha} '}[(s+\lambda )I-T']^{-1}{\textbf{T}'}^0 +\sum _{p=1}^{L-1}{\varvec{\gamma} _p}(sI-T_1)^{-1}{\textbf{T}_1}^0\lambda ^p{\varvec{\alpha} '} [(s+\lambda )I-T']^{-(p+1)}{\textbf{T}'}^0 \nonumber \\&\quad+{\varvec{\gamma} _L}(sI-T_1)^{-1}{\textbf{T}_1}^0 {\varvec{\alpha} '}[\lambda ^{-1}[(s+\lambda )I-T']^{-L} \bigl [I-\lambda [(s+\lambda )I-T']^{-1}\bigr ]^{-1}\nonumber \\&\quad \times[(s+\lambda )I-T']^{-1}{\textbf{T}'}^0 \end{aligned}$$
(28)

\(\square\)

1.3 Proof of Theorem 3.2

Proof

Let \(B_L\) denote the length of the busy period generated by type I customers arriving during the service time of a type II customer , \(\hat{B_L}(s)\) the LST of the length of the busy period and l the number of type I customers that arrive during service time of type II customer.

Then \(B_L=B_L^1+\cdots B_L^l\) ,where \(B_L^j\) denote the busy period generated by jth type I customer that arrive during X, where \(1\le j\le l\). Proceeding as in the above proof, we get the required result.

\(\square\)

Appendix 2

1.1 The Entries in the Block Matrices of the Infinitesimal Generator of the QBD in Model II

Define the entries of \(G_{0_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}\) as transition submatrices which contains transitions of the form \((0,i_1,j_1,k_1,l_1,m_1) \rightarrow (0,i_2,j_2,k_2,l_2,m_2).\) Since none or one event alone could take place in a short interval of time with positive probability, in general, a transition such as \((i_1,j_1,k_1,l_1,m_1,n_1)\rightarrow (i_2,j_2,k_2,l_2,m_2,n_2)\) has positive rate only for exactly one of \(i_2,j_2,k_2,l_2,m_2,n_2\) different from \(i_1,j_1,k_1,l_1,m_1,n_1\).

$$ \begin{aligned} G_{0_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}=\left\{ \begin{array}{ll} \lambda ({\varvec{\alpha} }\ \otimes I_n)& i_1=0,i_2=1;j_1=j_2=0; k_2=1;\\ &\quad 1\le l_2\le m, 1\le m_1,m_2 \le n\\ \lambda I_{mn}&\quad 1 \le i_1 \le N-2, i_2=i_1+1;j_1=j_2=0;i_1\le k_1\le N-2,\\ &\quad k_2=k_1+1;1\le l_1,l_2 \le m;1\le m_1,m_2\le n\\ \lambda {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &\quad 1\le i_1 \le N-1,i_2=i_1+1; j_1=0,j_2=1;\\ &\quad k_1=N-1;1\le l_1,l_2 \le m;1\le m_1,m_2\le n\\ \lambda I_{mn}&\quad 1 \le i_1 \le L-1,i_2=i_1+1; j_1=j_2=1;\\ &\quad 1\le l_1,l_2 \le m;1\le m_1,m_2\le n\\ \eta {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n)&\quad 1\le i_1\le N-1;j_1=0,j_2=1; \\ &\quad i_1\le k_1\le N-1;1\le l_1,l_2\le m;1\le m_1,m_2\le n\\ \theta {\textbf{T}}^0 \otimes I_n &\quad i_1=1,i_2=0;j_1=0,j_2=0;1\le k_1\le N-1,\\ &\quad 1 \le l_1\le m; 1\le m_1,m_2\le n\\ {\textbf{T}}^0 \otimes I_n &\quad i_1=1,i_2=0;j_1=1,j_2=0;1 \le l_1\le m; \\ &\quad 1\le m_1,m_2\le n\\ \theta {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n&\quad 2\le i_1\le N-1, i_2=i_1-1;j_1=0,j_2=0; i_1\le k_1\le \\ &\quad N-1, k_2=k_1; 1 \le l_1,l_2 \le m;1\le m_1,m_2 \le n\\ {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n &\quad 2\le i_1 \le L,i_2=i_1-1 ;j_1=j_2=1;\\ &\quad 1 \le l_1,l_2 \le m; 1\le m_1,m_2\le n\\ D_0-\lambda I_n &\quad i_1=i_2=0;j_1=j_2=0; 1\le m_1,m_2\le n\\ \theta T \oplus D_0-(\lambda +\eta )I_{mn}&\quad 1\le i_1\le N-1, i_2=i_1;j_1=j_2=0;i_1\le k_1\le N-1,\\ &\quad k_2=k_1;1 \le l_1,l_2 \le m; 1\le m_1,m_2 \le n\\ T \oplus D_0-\lambda I_{mn} &\quad 1\le i_1\le L-1,i_2=i_1; j_1=j_2=1;1 \le l_1,l_2 \le m;\\ &\quad 1\le m_1,m_2\le n\\ T\oplus D_0&\quad i_1=i_2=L;j_1=j_2=1;1 \le l_1,l_2 \le m;\\ &\quad 1\le m_1,m_2 \le n\\ \end{array} \right. \end{aligned}$$

Define the entries of \(H_{0_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_1)}\) as transition submatrices which contains transitions of the form \((0,i_1,j_1,k_1,l_1,m_1) \rightarrow (1,i_2,j_2,k_2,l_2,m_2)\)

$$ \begin{aligned} H_{0_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}=\left\{ \begin{array}{ll} D_1 &\quad i_1=i_2=0; j_1=j_2=0; 1\le m_1,m_2\le n\\ I_m \otimes D_1&\quad 1\le i_1\le N-1,i_2=i_1;j_1=j_2=0;i_1\le k_1\le N-1,k_2=k_1;\\ &\quad 1 \le l_1,l_2\le m; 1\le m_1,m_2 \le n\\ I_m \otimes D_1&\quad 1\le i_1\le L, i_2=i_1;j_1=j_2=1;1 \le l_1,l_2 \le m;\\ &\quad 1\le m_1,m_2 \le n \end{array} \right. \end{aligned}$$

Define the entries of \(H_{1_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}\) as transition submatrices which contains transitions of the form \((1,i_1,j_1,k_1,l_1,m_1) \rightarrow (0,i_2,j_2,k_2,l_2,m_2)\).

$$ \begin{aligned} H_{1_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}=\left\{ \begin{array}{ll} {\textbf{T}'}^0 \otimes I_n&\quad i_1=i_2=0 ; j_1=2,j_2=0;1 \le l_1\le m'; \\ &\quad 1\le m_1,m_2\le n\\ {\textbf{T}'}^0 {\varvec{\alpha} } \otimes I_n&\quad 1\le i_1\le L,i_2=i_1;j_1=2,j_2=1;1 \le l_1 \le m',1\le l_2\le m;\\ &\quad 1\le m_1,m_2\le n \end{array} \right. \end{aligned}$$

Define the entries of \(A_{2_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}\) as transition submatrices which contains transitions of the form \((h,i_1,j_1,k_1,l_1,m_1) \rightarrow (h-1,i_2,j_2,k_2,l_2,m_2)\), where \(h\ge 1\).

$$ \begin{aligned} A_{2_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}=\left\{ \begin{array}{ll} {\textbf{T}'}^0 {\varvec{\alpha} '} \otimes I_n&{}\quad i_1=i_2=0;j_1=j_2=2;1 \le l_1,l_2\le m';\\ {} &{}\quad 1\le m_1,m_2 \le n\\ {\textbf{T}'}^0 {\varvec{\alpha} } \otimes I_n &{}\quad 1\le i_1\le L,i_2=i_1;j_1=2,j_2=1; 1 \le l_1\le m',1\le l_2\le m; \\ &{}\quad 1 \le m_1,m_2\le n \end{array} \right. \end{aligned}$$

Define the entries of \(A_{1_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}\) as transition submatrices which contains transitions of the form \((h,i_1,j_1,k_1,l_1,m_1) \rightarrow (h,i_2,j_2,k_2,l_2,m_2)\), where \(h\ge 1\).

$$ \begin{aligned} A_{1_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}=\left\{ \begin{array}{ll} \lambda ({\varvec{\alpha} }\ \otimes I_n)&{}\quad i_1=0,i_2=1;j_1=j_2=0; k_2=1;\\ {} &{}\quad 1\le l_2\le m;\, 1\le m_1,m_2\le n\\ \lambda I_{mn},\,&{}\quad 1\le i_1 \le N-2;i_2=i_1+1;j_1=j_2=0;i_1\le k_1\le N-2,\\ {} &{}\quad k_2=k_1+1;1 \le l_1,l_2 \le m; 1\le m_1,m_2 \le n\\ \lambda {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &{}\quad 1\le i_1\le N-1;j_1=0,j_2=1;k_1=N-1;1 \le l_1,l_2\le m;\\ &{}\quad 1\le m_1,m_2 \le n\\ \lambda I_{mn} &{}\quad 1\le i_1 \le L-1,i_2=i_1+1;j_1=j_2=1;1 \le l_1,l_2 \le m;\\ &{}\quad 1\le m_1,m_2\le n\\ \lambda I_{mn} &{}\quad 0\le i_1\le L-1,i_2=i_1+1;j_1=j_2=2;1 \le l_1,l_2\le m'; \\ &{}\quad 1\le m_1,m_2\le n\\ \eta ({\varvec{\alpha} '} \otimes I_n) &{}\quad i_1=i_2=0;j_1=0,j_2=2; 1\le l_2\le m';\\ {} &{}\quad 1\le m_1,m_2\le n\\ \eta {\textbf{e}}(m)\otimes ({\varvec{\alpha} } \otimes I_n) &{}\quad 1\le i_1\le N-1,i_2=i_1;j_1=0,j_2=1;i_1\le k_1\le N-1;\\ &{}\quad 1\le l_1,l_2\le m; 1\le m_1,m_2\le n\\ \theta {\textbf{T}}^0 \otimes I_n&{}\quad i_1=1,i_2=0;j_1=j_2=0;1\le k_1\le N-1;\\ &{}\quad 1\le l_1\le m;1\le m_1,m_2\le n\\ {\textbf{T}}^0 {\varvec{\alpha} '} \otimes I_n&{}\quad i_1=1,i_2=0;j_1=1,j_2=2; 1\le l_1\le m,1\le l_2\le m'; \\ &{}\quad 1\le m_1,m_2\le n\\ \theta {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n &{}\quad 2\le i_1 \le N-1,i_2=i_1-1;j_1=j_2=0; i_1\le k_1\le N-1, \\ &{}\quad k_2=k_1;1 \le l_1,l_2\le m; 1\le m_1,m_2 \le n\\ {\textbf{T}}^0 {\varvec{\alpha} } \otimes I_n &{}\quad 2\le i_1 \le L, i_2=i_1-1;j_1=j_2=1;1 \le l_1,l_2\le m;\\ &{}\quad 1\le m_1,m_2 \le n\\ D_0-(\lambda +\eta ) I_n &{}\quad i_1=i_2=0;j_1=j_2=0;1\le m_1,m_2\le n\\ T' \oplus D_0-\lambda I_{mn}&{}\quad i_1=i_2=0;j_1=j_2=2;1\le l_1,l_2\le m'; 1\le m_1,m_2\le n\\ \theta T \oplus D_0-(\lambda +\eta )I_{mn}&{}\quad 1\le i_1\le N-1,i_2=i_1;j_1=j_2=0; i_1 \le k_1 \le N-1,\\ {} &{}\quad k_2=k_1; 1\le l_1,l_2\le m;1\le m_1,m_2\le n\\ T \oplus D_0-\lambda I_{mn}&{}\quad 1\le i_1\le L-1, i_2=i_1;j_1=j_2=1;1 \le l_1,l_2\le m;\\ &{}\quad 1\le m_1,m_2 \le n\\ T' \oplus D_0-\lambda I_{mn}&{}\quad 1\le i_1\le L-1, i_2=i_1;j_1=j_2=2;1 \le l_1,l_2 \le m';\\ &{}\quad 1\le m_1,m_2\le n\\ T\oplus D_0&{}\quad i_1=i_2=L;j_1=j_2=1;1 \le l_1,l_2\le m; 1\le m_1,m_2 \le n\\ T'\oplus D_0&{}\quad i_1=i_2=L;j_1=j_2=2;1 \le l_1,l_2 \le m'; 1\le m_1,m_2\le n \end{array} \right. \end{aligned}$$

Define the entries of \(A_{0_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}\) as transition submatrices which contains transitions of the form \((h,i_1,j_1,k_1,l_1,m_1) \rightarrow (h+1,i_2,j_2,k_2,l_2,m_2)\), where \(h\ge 1\).

$$ \begin{aligned} A_{0_{(i_1,j_1,k_1,l_1,m_1)}}^{(i_2,j_2,k_2,l_2,m_2)}=\left\{ \begin{array}{ll} D_1 &{}\quad i_1=i_2=0;j_1=j_2=0;1\le m_1,m_2\le n\\ I_{m'} \otimes D_1 &{}\quad i_1=i_2=0;j_1=j_2=2;1 \le l_1,l_2\le m'; 1\le m_1,m_2 \le n\\ I_m \otimes D_1 &{}\quad 1\le i_1\le N-1,i_2=i_1;j_1=j_2=0;i_1\le k_1\le N-1,k_2=k_1; \\ &{}\quad 1 \le l_1,l_2\le m;1\le m_1,m_2\le n\\ I_m \otimes D_1 &{}\quad 1\le i_1\le L,i_2=i_1;j_1=j_2=1;1 \le l_1,l_2 \le m;\\ &{}\quad 1\le m_1,m_2\le n\\ I_{m'} \otimes D_1&{}\quad 1\le i_1\le L,i_2=i_1;j_1=j_2=2;1 \le l_1,l_2 \le m'; 1\le m_1,m_2 \le n \end{array} \right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, A., Divya, V. (M, MAP)/(PH, PH)/1 Queue with Non-preemptive Priority and Working Vacation Under N-Policy. J Indian Soc Probab Stat 21, 69–122 (2020). https://doi.org/10.1007/s41096-020-00081-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-020-00081-z

Keywords

Navigation