Skip to main content
Log in

Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

The recent progress in geographical information systems, remote sensing (RS) and data analytics enables us to acquire and process large amount of Earth observation data. Convolutional neural networks (CNN) are being used frequently in classification of multi-dimensional images with high accuracy. In this paper, we test CNNs for the classification of hyperspectral RS data. Our proposed CNN is a multi-layered neural network architecture, which is tailored to classify objects based on pixel-wise spatial information using spectral bands of hyperspectral imagery (HSI). We use benchmark satellite imagery in four different HSI datasets for classification using the proposed architecture. Our results are compared with support vector machine (SVM) and extreme learning machine (ELM) algorithms, which are frequently used techniques of machine learning in RS data classification. Moreover, we also provide a comparison with the state-of-the-art CNN approaches, which have been used for HSI classification. Our results show improvements of up to 6% on average over SVM and ELM while up to 4% improvement is observed in comparison with two recently proposed CNN architectures for HSI classification accuracy. On the other hand, the processing time of our proposed CNN is also significantly lower.

Zusammenfassung

Pixelweise Klassifizierung von Hyperspektralszenen mit Convolutional Neural Networks. Der Fortschritt bei Geoinformationssystemen, Fernerkundung und Datenanalyse erlaubt uns die Gewinnung und Verarbeitung von umfangreichen Erdbeobachtungdaten. Convolutional Neural Networks (CNN) werden oft zur Klassifizierung von multidimensionalen hoch aufgelösten Bilddaten verwendet. In diesem Artikel untersuchen wir die Eignung von CNNs für die Klassifizierung von hyperspektralen Fernerkundungsdaten. Das von uns vorgeschlagene CNN besitzt die Struktur eines neuronalen Netzwerks mit mehreren Ebenen zur Objekt-Klassifizierung auf der Grundlage einer pixelweisen Auswertung der hyperspektralen Bilddaten. Zur Verifizierung unserer Klassifizierungsmethode benutzen wir vier verschiedene Datensätze, aufgenommen von Satellitenplattformen. Die Ergebnisse werden mit denen der Methoden Support Vector Machine (SVM) und Extreme Learning Machine (ELM), die beide bei automatischen Klassifizierungsverfahren der Fernerkundung weit verbreitet sind, verglichen. Darüber hinaus liefern wir einen Vergleich zu aktuellen Ansätzen der CNN. Unsere Ergebnisse zeigen eine Verbesserung der Klassifizierungsgenauigkeit von 6% gegenüber SVM und ELM sowie eine Verbesserung von 4% gegenüber kürzlich veröffentlichen CNN-Architekturen. Darüber hinaus ist unser Ansatz deutlich schneller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  2. http://www.ntu.edu.sg/home/egbhuang/.

References

  • Abraham A (2005) Artificial neural networks. In: Sydenham PH, Thorn R (eds) Handbook of measuring system design. https://doi.org/10.1002/0471497398.mm421

  • Ba J, Mnih V, Kavukcuoglu K (2014) Multiple object recognition with visual attention. arXiv:1412.7755

  • Belgiu M, Drgu L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Article  Google Scholar 

  • Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16

    Article  Google Scholar 

  • Bottou L (2012) Stochastic gradient descent tricks. In: Montavon G, Orr GB, Müller KR (eds) Neural networks: tricks of the trade. Lecture Notes in Computer Science. Springer, Berlin, vol 7700. pp 421–436

    Google Scholar 

  • Dan C, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. arXiv:1202.2745

  • Cao X, Zhou F, Xu L, Meng D, Xu Z, Paisley J (2017) Hyperspectral image segmentation with markov random fields and a convolutional neural network. arXiv:1705.00727

  • Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B et al (2014) CuDNN: efficient primitives for deep learning. arXiv:1410.0759

  • Dahl GE, Sainath TN, Hinton GE (2013) Improving deep neural networks for LVCSR using rectified linear units and dropout. In: Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on, IEEE, pp 8609-8613

  • Guidici D, Clark ML (2017) One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California. Remote Sens 9:629

    Article  Google Scholar 

  • Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  • Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens 2015:258619. https://doi.org/10.1155/2015/258619

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  • Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R et al (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia. Florida, USA

  • Kampffmeyer M, Salberg A-B, Jenssen R (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–9

  • Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R et al (2009) Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans Pattern Anal Mach Intell 31:319–336

    Article  Google Scholar 

  • Kim Y (2014) Convolutional neural networks for sentence classification. arXiv:1408.5882

  • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  • Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19:17–28

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  • LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition. DC, USA, Washington

  • LeCun Y (2015) Learning methods for generic object recognition with invariance to pose and lighting. In: Computer vision and pattern recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol 2. pp II–104). IEEE.

  • Li J, Bioucas Dias JM, Plaza A (2013) Spectral spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans Geosci Remote Sens 51:844–856

    Article  Google Scholar 

  • Li W, Fu H, Yu L, Cracknell A (2016) Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens 9:22

    Article  Google Scholar 

  • Li X, Wu T, Liu K, Li Y, Zhang L (2016) Evaluation of the Chinese fine spatial resolution hyperspectral satellite TianGong-1 in urban land-cover classification. Remote Sens 8:438

    Article  Google Scholar 

  • Li W, Wu G, Zhang F, Du Q (2017) Hyperspectral image classification using deep pixel-pair features. IEEE Trans Geosci Remote Sens 55:844–853

    Article  Google Scholar 

  • Lyu MR, Song J, Cai M (2005) A comprehensive method for multilingual video text detection, localization, and extraction. IEEE Trans Circuits Syst Video Technol 15:243–255

    Article  Google Scholar 

  • Ma Y, Wang L, Liu D, Liu P, Wang J, Tao J (2012) Generic parallel programming for massive remote sensing data processing. In: IEEE international conference on cluster computing, Beijing, China

  • Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience and remote sensing symposium (IGARSS), 2015 IEEE international. Italy, Milan

  • Marmanis D, Wegner JD, Galliani S, Schindler K, Datcu M, Stilla U (2016) Semantic segmentation of aerial images with an ensemble of CNSS. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:473–480

    Article  Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42:1778–1790

    Article  Google Scholar 

  • Mhaskar H, Liao Q, Poggio TA (2017) When and why are deep networks better than shallow ones? In: AAAI, pp 2343–2349

  • Plaza AJ (2009) Special issue on architectures and techniques for real-time processing of remotely sensed images. J Real Time Image Process 4:191–193

    Article  Google Scholar 

  • Saprykin O, Fedoseev A, Mikheeva T (2016) Recognition of urban transport infrastructure objects via hyperspectral images. In: VEHITS, pp 203–208

  • Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681

    Article  Google Scholar 

  • Wu F-Y, Yan S-Y, Smith JS, Zhang B-L (2017) Traffic scene recognition based on deep CNN and VLAD spatial pyramids. arXiv:1707.07411

  • Zhang T (2001) An introduction to support vector machines and other kernel-based learning methods. AI Mag 22(2):103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.A., Tahir, A., Khan, J.A. et al. Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks. PFG 87, 33–45 (2019). https://doi.org/10.1007/s41064-019-00066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-019-00066-z

Keywords

Navigation