Skip to main content

Advertisement

Log in

Lateglacial and Holocene glacier activity in the Van Mijenfjorden area, western Svalbard

  • Original Article
  • Published:
arktos

Abstract

Sedimentological, morphological and chronological studies of the Van Mijenfjorden region, Svalbard suggest numerous glacial advances seen in terrestrial and marine archives spanning from the Late Weichselian to the Little Ice Age. Only one ice-marginal deposit from the retreat phase of the fjord glacier is found along the entire fjord system. The deposit is located at a topographically controlled position near a bedrock threshold at the mouth of the fjord. Glacial records from tributary valleys and fjords correspond to varying sizes and styles of ice flow related to the deglaciation of the area during the Lateglacial and early Holocene as well as the regrowth of glacier systems during the early Holocene, the Neoglacial and the Little Ice Age. During the Younger Dryas, as the Van Mijen-fjord glacier retreated, a glacier advance took place in a southern tributary, probably as a dynamic response to the retreat in the fjord. Another glacier advance from a northern tributary valley took place during the early Holocene. This glacier advance extended to a position well outside the Little Ice Age (LIA) margins during a period in time when marine proxies suggest warm regional fjords. A Neoglacial glacier advance is identified in a third and inner tributary which also extends further than the subsequent LIA maximum. The Paula glacier system in the inner part of the fjord surged at least five times in the last 650 years, with each subsequent surge advance exhibiting less extensive maximum than the previous, resulting in an overall decrease in mass of the Paula glacier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Benn DI, Evans DJA (2013) Glaciers and glaciation. Routledge, London, p 802

    Google Scholar 

  2. Bronk Ramsey C, Scott EM, van der Plicht J (2013) Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55:2021–2027. https://doi.org/10.2458/azu_js_rc.55.16935

    Article  Google Scholar 

  3. Comiso JC, Meier WN, Gersten R (2017) Variability and trends in the Arctic sea ice cover: results from different techniques. J Geophys Res Oceans 122:6883–6900. https://doi.org/10.1002/2017JC012768

    Article  Google Scholar 

  4. D’Andrea WJ, Vaillencourt DA, Balascio NL, Werner A, Roof SR, Retelle M, Bradley RS (2012) Mild Little Ice Age and unprecedented recent warmth in an 1800-year lake sediment record from Svalbard. Geology 40:1007–1010

    Google Scholar 

  5. De Geer G (1919) Om Spetsbergens natur i Sveagruvans omnejd. Ymer 39:238–277

    Google Scholar 

  6. Dowdeswell JA, Hamilton G, Hagen JO (1991) The duration of the active phase of surge-type glaciers: contrast between Svalbard and other regions. J Glaciol 37:86–98

    Google Scholar 

  7. Drange H, Dokken T, Furevik T et al (2013) The nordic seas: an overview. In: Drange H, Dokken T, Furevik T et al (eds) The nordic seas: an integrated perspective. American Geophysical Union, Washington, DC, pp 1–10

    Google Scholar 

  8. Elgersma A, Helliksen D (1986) Kvartærgeologiske undersøkelser i Van Mijenfjordområdet, Spitsbergen, Svalbard. Unpublished Cand. Scient. thesis, University of Bergen

  9. Farnsworth WR, Ingolfsson O, Noormets R, Allaart L, Alexanderson H, Henriksen M, Schomacker A (2017) Dynamic Holocene glacial history of St. Jonsfjorden, Svalbard. Boreas 46:585–603. https://doi.org/10.1111/bor.12269

    Article  Google Scholar 

  10. Farnsworth WR, Ingólfson Ó, Retelle M, Schomacker A (2016) Over 400 previously undocumented Svalbard surge-type glaciers identified. Geomorphology 264:52–60

    Google Scholar 

  11. Forwick M, Vorren TO, (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 280(1–2):258–274

    Google Scholar 

  12. Hagen JO, Liestøl O, Roland E, Jørgensen T (1993) Glacier atlas of Svalbard and Jan Mayen. Meddelelser vol 129. Norsk Polarinstitutt, Oslo, p. 143

    Google Scholar 

  13. Hald M, Korsum S (2008) The 8200 cal. yr. BP reflected in the Arctic fjord, Van Mijenfjorden. Holocene 18:981–990

    Google Scholar 

  14. Hald M, Andersson C, Ebbesen H, Jansen E, Klitgaard-Kristensen D, Risebrobakken B, Salomonsen GR, Sarnthein M, Sejrup HP, Telford RJ (2007) Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quat Sci Rev 26:3423–3440

    Google Scholar 

  15. Hald M, Dahlgren T, Olsen T-E, Lebesbye E (2001) Late Holocene palaeoceanography in Van Mijenfjorden. Svalbard Polar Res 20:23–35

    Google Scholar 

  16. Hald M, Korsum S (2008) The 8200 cal. year. BP reflected in the Arctic fjord, Van Mijenfjorden. Holocene 18:981–990

    Google Scholar 

  17. Hamberg A (1905) Astronomische, photogrammetrische und erdmagnetische arbeiten der von A.G. Nathorst geleiten schwedischen Polarexpedition 1898. Kungliga Svenska Vetenskabs-Akademiens Handlingar 39:115–156

    Google Scholar 

  18. Henriksen M, Alexanderson H, Landvik JY, Linge H, Peterson G (2014) Dynamics and retreat of the Late Weichselian Kongsfjorden ice stream, NW Svalbard. Quat Sci Rev 92:235–245

    Google Scholar 

  19. Hormes A, Akçar N, Kubik PW (2011) Cosmogenic radionuclide dating indicates ice-sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas. https://doi.org/10.1111/j.1502-3885.2011.00215.x

    Article  Google Scholar 

  20. Hormes A, Gjermundsen EF, Rasmussen TL (2013) From mountain top to the deep sea—deglaciation in 4D of the northwestern Barents Sea ice sheet. Quat Sci Rev 75:78–99

    Google Scholar 

  21. Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45

    Google Scholar 

  22. Humlum O, Elberling B, Hormes A, Fjordheim K, Hansen OH, Heinemeier J (2005) Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 1:396–407

    Google Scholar 

  23. Huss M, Hock R, (2015) A new model for global glacier change and sea-level rise. Front Earth Sci. https://doi.org/10.3389/feart.2015.00054

    Article  Google Scholar 

  24. Ingólfsson Ó, Landvik JY (2013) The Svalbard-Barents sea icesheet—historical, current and future perspectives. Quat Sci Rev 64:33–60

    Google Scholar 

  25. Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quat Sci Rev 29:1301–1312

    Google Scholar 

  26. Jiskoot H, Murray T, Boyle P (2000) Controls on the distribution of surge-type glaciers in Svalbard. J Glaciol 46:412–422

    Google Scholar 

  27. Kempf P, Forwick M, Laberg JS, Vorren TO (2013) Late Weichselian and Holocene sedimentary palaeoenvironment and glacial activity in the high-arctic van Keulenfjorden, Spitsbergen. Holocene 23:1607–1618

    Google Scholar 

  28. Kjellström OCJ (1901) En excursion för uppmätning af Van Mijen bay under 1898 års svenska polarexpedition. Ymer H.I., pp 29–34

  29. Kjær KH, Larsen E, van der Meer J, Ingólfsson Ó, Krüger J, Benediktsson ÍÖ, Knudsen CG, Schomacker A (2006) Subglacial decoupling at the sediment/bedrock interface: a new mechanism for rapid flowing ice. Quat Sci Rev 25:2704–2712

    Google Scholar 

  30. Kristensen L, Benn DI (2012) A surge of the glaciers Skobreen-Paulabreen, Svalbard, observed by time-lapse photographs and remote sensing data. Polar Res 31:1751–8369

    Google Scholar 

  31. Kristensen L, Benn DI, Hormes A, Ottesen D (2009) Mud aprons in front of Svalbard surge moraines: evidence of subglacial deforming layers or proglacial glaciotectonics? Geomorphology 111:206–221

    Google Scholar 

  32. Landvik JY, Alexanderson H, Henriksen M, Ingólfsson Ó (2014) Landscape imprints of changing glacial regimes during ice-sheet build-up and decay: a conceptual model from Svalbard. Quat Sci Rev 92:258–268

    Google Scholar 

  33. Landvik JY, Bolstad M, Lycke AK, Mangerud J, Sejrup HP (1992) Weichselian stratigraphy and paleoenvironments at Bellsund, western Svalbard. Boreas 21:335–358

    Google Scholar 

  34. Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen JI, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat Sci Rev 17:43–75

    Google Scholar 

  35. Landvik JY, Brook EJ, Gualtieri L, Raisbeck G, Salvigsen O, Yiou F (2003) Northwest Svalbard during the last glaciation: ice-free areas existed. Geology 31:905–908

    Google Scholar 

  36. Landvik JY, Ingólfsson Ó, Mienert J, Lehman SJ, Solheim A, Elverhøi A, Ottesen D (2005) Rethinking Late Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas 34:7–24

    Google Scholar 

  37. Landvik JY, Mangerud J, Salvigsen O (1987) The Late Weichselian and Holocene shoreline displacement on the west-central coast of Svalbard. Polar Res 3:1–10

    Google Scholar 

  38. Larsen E, Farnsworth WR, Høgaas F, Lyså A, Rubensdotter L (2016) Quaternary geological and geomorphological map, Svea Svalbard Scale 1:60,000, Geological Survey of Norway

  39. Larsen E, Fredin O, Jensen M, Lyså A, Kuznetsov D, Subetto D (2014) Subglacial sediment, proglacial lake level and topographic controls on ice extent and lobe geometries during the last glacial maximum in NW Russia. Quat Sci Rev 92:369–387

    Google Scholar 

  40. Larsen E, Fredin O, Lyså A, Amantov A, Fjeldskaar W, Ottesen D (2016) Causes of time-transgressive glacial maxima positions of the last Scandinavian ice sheet. Nor J Geol 96:1–12. https://doi.org/10.17850/njg96-2-06

    Article  Google Scholar 

  41. Lovell H, Boston CM (2017) Glacitectonic composite ridge systems and surge-type glaciers: an updated correlation based on Svalbard, Norway. Arktos 3:1–16

    Google Scholar 

  42. Lyså A, Larsen E, Høgaas F, Jensen MA, Klug M, Rubensdotter L, Szczucinski W (2018) A temporary glacier-surge ice-dammed lake, Braganzavågen, Svalbard. Boreas. https://doi.org/10.1111/bor.12302

    Article  Google Scholar 

  43. Lønne I (2005) Faint traces of high Arctic glaciations: an early Holocene ice-front fluctuation in Bolterdalen, Svalbard. Boreas 34:308–323

    Google Scholar 

  44. Mangerud J, Bolstad M, Elgersma A, Helliksen D, Landvik JY, Lønne I, Lycke AK, Salvigsen O, Sandahl T, Svendsen JI (1992) The last glacial maximum on Spitsbergen, Svalbard. Quat Res 38:1–31

    Google Scholar 

  45. Mangerud J, Bondevik S, Gulliksen S, Hufthammer AK, Høisæter T (2006) Marine 14C reservoir ages for 19th century whales and mollusks from the North Atlantic. Quat Sci Rev 25:3228–3245

    Google Scholar 

  46. Mangerud J, Landvik JY (2007) Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36:278–285

    Google Scholar 

  47. Mangerud J, Svendsen JI (2017) The Holocene Thermal Maximum around Svalbard, Arctic North Atlantic; molluscs show early and exceptional warmth. Holocene. https://doi.org/10.1177/0959683617715701

    Article  Google Scholar 

  48. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, Gonzalez Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. climate change 2013: the physical science basis. In contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 383–464

    Google Scholar 

  49. McCarrol D, Rijsdijk KF (2003) Deformation styles as a key for interpreting glacial depositional environments. J Quat Sci 18:473–489

    Google Scholar 

  50. Meier MF, Post A (1969) What are glacial surges? Can J Earth Sci 6:807–817. https://doi.org/10.1139/e69-081

    Article  Google Scholar 

  51. Menounos B, Goehring BM, Osborn G, Margold M, Ward B, Bond J, Clarke GKC, Clague JJ, Lakeman T, Koch J, Caffee MW, Gosse J, Stroeven AP, Seguinot J, Heyman J (2017) Cordilleran ice sheet mass loss preceded climate reversals near the pleistocene termination. Science 358:781–784. https://doi.org/10.1126/science.aan3001

    Article  Google Scholar 

  52. Nuth C, Kohler J, König M, von Deschwanden A, Hagen JO, Kääb A, Moholdt G, Pettersson R (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 7:1603–1621

    Google Scholar 

  53. Ottesen D, Dowdeswell JA (2006) Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. J Geophys Res Earth Surf 111:1–16

    Google Scholar 

  54. Ottesen D, Dowdeswell JA, Bellec VK, Bjarnadóttir LR (2017) The geomorphic imprint of glacier surges into open-marine waters: examples from eastern Svalbard. Mar Geol 392:1–29. https://doi.org/10.1016/j.margeo.2017.08.007

    Article  Google Scholar 

  55. Ottesen D, Dowdeswell JA, Benn DI, Kristensen L, Christiansen HH, Christensen O, Hansen L, Lebesbye E, Forwick M, Vorren TO (2008) Submarine landforms characteristic of glacier surges in two Spitsbergen fjords. Quat Sci Rev 27:1583–1599

    Google Scholar 

  56. Ottesen D, Dowdeswell JA, Landvik J, Mienert J (2007) Dynamics and retreat of the Late Weichselian ice sheet on Svalbard inferred from high-resolution seafloor morphology. Boreas 36:286–306

    Google Scholar 

  57. Philipps W, Briner JP, Gislefoss L, Linge H, Koffman T, Fabel D, Xu S, Hormes A (2017) Late Holocene glacier activity at inner Hornsund and Scottbreen, southern Svalbard. J Quat Sci 32:501–515

    Google Scholar 

  58. Punning J-M, Troitsky L, Rajamäe R (1976) The genesis and age of the Quaternary deposits in the eastern part of Van Mijenfjorden, West Spitsbergen. Föreningens i Stockholm Förhandlingar 9:343–347

    Google Scholar 

  59. Reimer P, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TG, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Google Scholar 

  60. Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene thermal maximum. Quat Sci Rev 48:7–19. https://doi.org/10.1016/j.quascirev.2012.05.022 2012.

    Article  Google Scholar 

  61. Reusche M, Winsor K, Carlson AE, Marcott SA, Rood DH, Novak A, Roof S, Retelle M, Werner A, Caffee M, Clark PU (2014) 10Be surface exposure ages on the late-Pleistocene and Holocene history of Linnebreen on Svalbard. Quat Sci Rev 89:5–12

    Google Scholar 

  62. Rogers JC, Yang L, Li L (2005) The role of Fram Strait winter cyclones on sea ice flux and on Spitsbergen air temperatures. Geophys Res Lett 32:L06709. https://doi.org/10.1029/2004GL02226

    Article  Google Scholar 

  63. Rowan DE, Pewe TL, Pewe RH (1982) Holocene glacial geology of the Svea lowland, Spitsbergen, Svalbard. Geografiske Annaler 64 A:35–51

    Google Scholar 

  64. Salvigsen O, Elgersma A, Hjort C, Lagerlund E, Liestøl O, Svensson N-O (1990) Glacial history and shoreline displacement on Erdmannflya and Bohemanflya, Spitsbergen, Svalbard. Polar Res 8:261–273

    Google Scholar 

  65. Salvigsen O, Winsnes TS (1987) Geological map Svalbard 1:100,000. C10G. Braganzavågen. Norsk Polarinstitutt, Oslo

    Google Scholar 

  66. Sevestre H, Benn DI (2015) Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J Glaciol 61:646–662

    Google Scholar 

  67. Sletten K, Lyså A, Lønne I (2001) Formation and disintegration of a high-arctic ice-cored moraine complex, Scott Turnerbreen, Svalbard. Boreas 30:272–284

    Google Scholar 

  68. Snyder JA, Werner A, Miller GH (2000) Holocene cirque glacier activity in western Spitsbergen, Svalbard: sediment records from proglacial Linnevatnet. Holocene 10:555–563

    Google Scholar 

  69. Stroeven AP, Hättestrand C, Kleman J, Heyman J, Fabel D, Fredin O, Goodfellow BW, Harbor JM, Jansen JD, Olsen L, Caffee MW, Fink D, Lundqvist J, Rosqvist GC, Strömberg B, Jansson KN (2016) Deglaciation of Fennoscandia. Quat Sci Rev 147:91–121. https://doi.org/10.1016/j.quascirev.2015.09.016 Get rights and content

    Article  Google Scholar 

  70. Sund M, Eiken T, Hagen JO, Kääb A (2009) Svalbards surge dynamics derived from geometric changes. Ann Glaciol 50:50–60

    Google Scholar 

  71. Svendsen JI, Mangerud J (1997) Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene 7:45–57

    Google Scholar 

  72. Werner A (1993) Holocene moraine chronology, Spitsbergen, Svalbard: lichenometric evidence for multiple Neoglacial advances in the Arctic. Holocene 3:128–137

    Google Scholar 

  73. Østby TI, Schuler TV, Hagen JO, Hock R, Kohler J, Reijmer CH (2017) Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014. Cryosphere 11:191–215

    Google Scholar 

Download references

Acknowledgements

Financial support was given by the Geological Survey of Norway, the University Center in Svalbard, and the Research Council of Norway (IPY SciencePub project, Grant no. 175937/S30 to E. Larsen and Arctic Field Grant 2010 to A. Lyså, cf. Research Council of Norway RIS-ID 235826). The University Center in Svalbard, the Norwegian Polar Institute and Store Norske Spitsbergen Kullkompani provided logistical support. The Norwegian Polar Institute gave access to digital aerial orthophotos and the Norwegian Hydrographic Service provided access to multibeam bathymetric data. R. Viola gave valuable help with GIS- and DEM-work. I. Lundquist and M.C. Rasmussen contributed with the graphics. F. Høgaas assisted in the field. To all these institutions and persons, we extend our sincere thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiliv Larsen.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

41063_2018_42_MOESM1_ESM.pdf

Quaternary geological and geomorphological map of the Sveagruva area. Scale: 1:60 000 [38, unpublished] (PDF 3722 KB)

41063_2018_42_MOESM2_ESM.xlsx

Radiocarbon dates from the Sveagruva area. Most of the Tra-dates on mollusks reported in Table 1 are averages based on 2-4 parallel dates from the same mollusk sample. All individual dates in conventional radiocarbon years are listed herein. (XLSX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, E., Lyså, A., Rubensdotter, L. et al. Lateglacial and Holocene glacier activity in the Van Mijenfjorden area, western Svalbard. Arktos 4, 1–21 (2018). https://doi.org/10.1007/s41063-018-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0042-2

Keywords

Navigation