Skip to main content
Log in

Reviewing the potential: a comprehensive review of natural fibers (NFs) in structural concrete and their multifaceted influences

  • State-of-the-Art Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This comprehensive review critically examines the application of natural fibers (NFs) in structural concrete. Natural fibers, derived from plant resources, are integrated into concrete to enhance its mechanical properties and overall functionality. The utilization of these fibers in concrete reinforcement represents a sustainable alternative to traditional steel or synthetic fibers, contributing to environmentally conscious construction practices. India leads in plant fiber research, with significant attention on coconut fiber. Notably, fiber chemical compositions, which depend on factors like environment and geography, have profound implications for concrete characteristics. Various fibers exhibit unique relationships with concrete compressive and flexural strength, highlighting the importance of determining optimal fiber concentrations. The integration of fibers influences concrete’s tensile strength, density, and elasticity, with effects varying based on fiber type and concentration. Treatment protocols, particularly with sodium hydroxide and hydrogen peroxide, enhance tensile strength. However, introducing NFs typically compromises workability, necessitating adjustments in water or additives. Additionally, plant-derived fibers offer enhanced thermal insulation, fire resistance, and sound absorption in concrete. Continued research is vital for optimizing the benefits and addressing challenges of fiber-reinforced concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 10
Fig. 9
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

AMs:

Adobe mixtures

BSF:

Banana stem fiber

CF:

Coir fibers

CCFC:

Coconut coir fiber in concrete

CFRC:

Coir fiber-reinforced concrete

CSA:

Cotton stalk ash

EBCM:

Earth-based construction materials

EIA:

Environmental impact assessment

ER:

Electrical resistivity

FA:

Fly ash

JF:

Jute fibers

KF:

Kenaf fibers

KFLFC:

Kenaf fiber-reinforced lightweight foamed concrete

LCA:

Life cycle assessment

LFC:

Lightweight foamed concrete

LWSCC:

Lightweight self-compacting concrete

MDPSF:

Male date palm surfaces fibers

NF:

Natural fibers

NFRC:

Natural fiber-reinforced concrete

OPBF:

Oil palm broom fibers

OPEFB:

Oil palm empty fruit bunch fibers

PNFRC:

Pine needle fiber-reinforced concrete

RSA:

Rice straw ash

RT:

Room temperature

UHPC:

Ultra-high-performance concrete

UPV:

Ultrasonic pulse velocity

SCC:

Self-consolidating concrete

SCUHPC:

Self-compacting ultra-high-performance concrete

SEM:

Scanning electron microscope

WG:

Waste glass

References

  1. Netinger Grubeša I, Marković B, Gojević A, Brdarić J (2018) Effect of hemp fibers on fire resistance of concrete. Constr Build Mater 184:473–484. https://doi.org/10.1016/j.conbuildmat.2018.07.014

    Article  CAS  Google Scholar 

  2. Kumar P, Gautam P, Kaur S et al (2021) Bamboo as reinforcement in structural concrete. Mater Today: Proc 46:6793–6799. https://doi.org/10.1016/j.matpr.2021.04.342

    Article  Google Scholar 

  3. Razmi A, Mirsayar MM (2017) On the mixed mode I/II fracture properties of jute fiber-reinforced concrete. Constr Build Mater 148:512–520. https://doi.org/10.1016/j.conbuildmat.2017.05.034

    Article  Google Scholar 

  4. Sen T, Jagannatha Reddy HN (2013) Strengthening of RC beams in flexure using natural jute fibre textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems. Int J Sustain Built Environ 2:41–55. https://doi.org/10.1016/j.ijsbe.2013.11.001

    Article  CAS  Google Scholar 

  5. Shahinur S, Hasan M (2020) Jute/coir/banana fiber reinforced bio-composites: critical review of design, fabrication, properties and applications. Encycl Renew Sustain Mater 5:751–756. https://doi.org/10.1016/b978-0-12-803581-8.10987-7

    Article  Google Scholar 

  6. Sanjay MR, Arpitha GR, Yogesha B (2015) Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites: a review. Mater Today: Proc 2:2959–2967. https://doi.org/10.1016/j.matpr.2015.07.264

    Article  CAS  Google Scholar 

  7. Sharma K, Devnani GL (2022) Recent advancement in sisal fiber reinforced polymer composites. Mater Today: Proc 65:3893–3901. https://doi.org/10.1016/j.matpr.2022.07.185

    Article  CAS  Google Scholar 

  8. Islam MS, Ahmed SJ (2018) Influence of jute fiber on concrete properties. Constr Build Mater 189:768–776. https://doi.org/10.1016/j.conbuildmat.2018.09.048

    Article  Google Scholar 

  9. Ali B, Azab M, Ahmed H et al (2022) Investigation of physical, strength, and ductility characteristics of concrete reinforced with banana (Musaceae) stem fiber. J Build Eng 61:105024. https://doi.org/10.1016/j.jobe.2022.105024

    Article  Google Scholar 

  10. Asim M, Uddin GM, Jamshaid H et al (2020) Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J Build Eng 31:101411. https://doi.org/10.1016/j.jobe.2020.101411

    Article  Google Scholar 

  11. Niyasom S, Tangboriboon N (2021) Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Constr Build Mater 283:122627. https://doi.org/10.1016/j.conbuildmat.2021.122627

    Article  Google Scholar 

  12. Avubothu M, Ponaganti S, Sunkari R, Ganta M (2021) Effect of high temperature on coconut fiber Reinforced concrete. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.11.036

    Article  Google Scholar 

  13. Araya-Letelier G, Antico FC, Burbano-Garcia C et al (2021) Experimental evaluation of adobe mixtures reinforced with jute fibers. Constr Build Mater 276:122127–122127. https://doi.org/10.1016/j.conbuildmat.2020.122127

    Article  Google Scholar 

  14. Ghalieh L, Awwad E, Saad G et al (2017) Concrete columns wrapped with hemp fiber reinforced polymer – an experimental study. Proc Eng 200:440–447. https://doi.org/10.1016/j.proeng.2017.07.062

    Article  Google Scholar 

  15. Ankit RM, Chauhan P et al (2021) A review on mechanical properties of natural fiber reinforced polymer (NFRP) composites. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.07.275

    Article  Google Scholar 

  16. Abdalla JA, Thomas BS, Hawileh RA (2022) Use of hemp, kenaf and bamboo natural fiber in cement-based concrete. Mater Today: Proc 65:2070–2072. https://doi.org/10.1016/j.matpr.2022.06.428

    Article  CAS  Google Scholar 

  17. Awwad E, Mabsout M, Hamad B et al (2012) Studies on fiber-reinforced concrete using industrial hemp fibers. Constr Build Mater 35:710–717. https://doi.org/10.1016/j.conbuildmat.2012.04.119

    Article  Google Scholar 

  18. Tezara C, Siregar JP, Hamdan MHM et al (2021) Influence of layering sequences on tensile properties of hybrid woven Jute/Ramie fibre reinforced polyester composites. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.09.151

    Article  Google Scholar 

  19. Prakash R, Raman SN, Divyah N et al (2021) Fresh and mechanical characteristics of roselle fibre reinforced self-compacting concrete incorporating fly ash and metakaolin. Constr Build Mater 290:123209–123209. https://doi.org/10.1016/j.conbuildmat.2021.123209

    Article  CAS  Google Scholar 

  20. Karimah A, Ridho MR, Munawar SS et al (2021) A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. J Market Res 13:2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014

    Article  CAS  Google Scholar 

  21. Merta I, Tschegg EK (2013) Fracture energy of natural fibre reinforced concrete. Constr Build Mater 40:991–997. https://doi.org/10.1016/j.conbuildmat.2012.11.060

    Article  Google Scholar 

  22. Gencel O, Yavuz Bayraktar O, Kaplan G et al (2021) Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization. Constr Build Mater 294:123607. https://doi.org/10.1016/j.conbuildmat.2021.123607

    Article  CAS  Google Scholar 

  23. Ramesh M (2018) Hemp, jute, banana, kenaf, ramie, sisal fibers. Handbook of Properties of Textile and Technical Fibres 23:301–325. https://doi.org/10.1016/b978-0-08-101272-7.00009-2

    Article  Google Scholar 

  24. Dhakal HN, Zhang Z (2015) The use of hemp fibres as reinforcements in composites. Biofiber Reinforce Compos Mater: Use Hemp Fibres Reinforce Compos 24:86–101. https://doi.org/10.1533/9781782421276.1.86

    Article  Google Scholar 

  25. Sultana N, Hossain SMZ, Alam MS et al (2020) An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Constr Build Mater 243:118216. https://doi.org/10.1016/j.conbuildmat.2020.118216

    Article  Google Scholar 

  26. Hasan R, Sobuz MdHR, Akid ASM et al (2023) Eco-friendly self-consolidating concrete production with reinforcing jute fiber. J Build Eng 63:105519. https://doi.org/10.1016/j.jobe.2022.105519

    Article  Google Scholar 

  27. Sabarish KV, Paul P, Bhuvaneshwari JJ (2020) An experimental investigation on properties of sisal fiber used in the concrete. Mater Today: Proc 22:439–443. https://doi.org/10.1016/j.matpr.2019.07.686

    Article  CAS  Google Scholar 

  28. Rahimi M, Hisseine OA, Tagnit-Hamou A (2022) Effectiveness of treated flax fibers in improving the early age behavior of high-performance concrete. J build Eng 45:103448–103448. https://doi.org/10.1016/j.jobe.2021.103448

    Article  Google Scholar 

  29. Elbehiry A, Elnawawy O, Kassem M et al (2021) FEM evaluation of reinforced concrete beams by hybrid and banana fiber bars (BFB). Case Stud Constr Mater 14:e00479. https://doi.org/10.1016/j.cscm.2020.e00479

    Article  Google Scholar 

  30. Page J, Khadraoui F, Boutouil M, Gomina M (2017) Multi-physical properties of a structural concrete incorporating short flax fibers. Constr Build Mater 140:344–353. https://doi.org/10.1016/j.conbuildmat.2017.02.124

    Article  CAS  Google Scholar 

  31. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos B Eng 176:107305. https://doi.org/10.1016/j.compositesb.2019.107305

    Article  CAS  Google Scholar 

  32. Ali M, Li X, Chouw N (2013) Experimental investigations on bond strength between coconut fibre and concrete. Mater Des 44:596–605. https://doi.org/10.1016/j.matdes.2012.08.038

    Article  Google Scholar 

  33. Banerjee PK (2020) Environmental textiles from jute and coir. Elsevier eBooks 33:621–651. https://doi.org/10.1016/b978-0-12-818782-1.00019-5

    Article  Google Scholar 

  34. Sathia R, Vijayalakshmi R (2021) Fresh and mechanical property of caryota-urens fiber reinforced flowable concrete. J Market Res 15:3647–3662. https://doi.org/10.1016/j.jmrt.2021.09.126

    Article  CAS  Google Scholar 

  35. Tioua T, Kriker A, Barluenga G, Palomar I (2017) Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Constr Build Mater 154:721–733. https://doi.org/10.1016/j.conbuildmat.2017.07.229

    Article  Google Scholar 

  36. Feng B, Liu J, Lu Z et al (2023) Study on properties and durability of alkali activated rice straw fibers cement composites. J Build Eng 63:105515. https://doi.org/10.1016/j.jobe.2022.105515

    Article  Google Scholar 

  37. Liu J, Xie X, Li L (2022) Experimental study on mechanical properties and durability of grafted nano-SiO2 modified rice straw fiber reinforced concrete. Constr Build Mater 347:128575. https://doi.org/10.1016/j.conbuildmat.2022.128575

    Article  CAS  Google Scholar 

  38. Pachla EC, Silva DB, Stein KJ et al (2021) Sustainable application of rice husk and rice straw in cellular concrete composites. Constr Build Mater 283:122770. https://doi.org/10.1016/j.conbuildmat.2021.122770

    Article  Google Scholar 

  39. Ali M, Liu A, Sou H, Chouw N (2012) Mechanical and dynamic properties of coconut fibre reinforced concrete. Constr Build Mater 30:814–825. https://doi.org/10.1016/j.conbuildmat.2011.12.068

    Article  Google Scholar 

  40. Khan M, Rehman A, Ali M (2020) Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr Build Mater 244:118382. https://doi.org/10.1016/j.conbuildmat.2020.118382

    Article  CAS  Google Scholar 

  41. Wang W, Chouw N (2017) The behaviour of coconut fibre reinforced concrete (CFRC) under impact loading. Constr Build Mater 134:452–461. https://doi.org/10.1016/j.conbuildmat.2016.12.092

    Article  Google Scholar 

  42. Gupta M, Kumar M (2019) Effect of nano silica and coir fiber on compressive strength and abrasion resistance of Concrete. Constr Build Mater 226:44–50. https://doi.org/10.1016/j.conbuildmat.2019.07.232

    Article  CAS  Google Scholar 

  43. Ramaswamy HS, Ahuja BM, Krishnamoorthy S (1983) Behaviour of concrete reinforced with jute, coir and bamboo fibres. Int J Cem Compos Lightweight Concrete 5:3–13. https://doi.org/10.1016/0262-5075(83)90044-1

    Article  Google Scholar 

  44. Aziz MA, Paramasivam P, Lee SL (1981) Prospects for natural fibre reinforced concretes in construction. Int J Cem Compos Lightweight Concrete 3:123–132. https://doi.org/10.1016/0262-5075(81)90006-3

    Article  Google Scholar 

  45. Khan M, Ali M (2019) Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr Build Mater 203:174–187. https://doi.org/10.1016/j.conbuildmat.2019.01.103

    Article  CAS  Google Scholar 

  46. Sudarshan Dattatraya Kore (2021) Sustainable production of concrete using coir fibres. IOP Conf series 795:012006–012006. https://doi.org/10.1088/1755-1315/795/1/012006

    Article  Google Scholar 

  47. Krishna NK, Prasanth M, Gowtham R, Karthic S, Mini KM (2018) Enhancement of properties of concrete using natural fibers. Mater Today: Proc 5(11):23816–23823. https://doi.org/10.1016/j.matpr.2018.10.173

    Article  CAS  Google Scholar 

  48. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  49. Ali M (2014) Seismic performance of coconut-fibre-reinforced-concrete columns with different reinforcement configurations of coconut-fibre ropes. Constr Build Mater 70:226–230. https://doi.org/10.1016/j.conbuildmat.2014.07.086

    Article  Google Scholar 

  50. Ruben JS, Baskar G (2014) experimental study of coir fiber as concrete reinforcement material incement based composites. Int J Eng Res Appl 4(1):128–131

    Google Scholar 

  51. Affan M, Ali M (2022) Experimental investigation on mechanical properties of jute fiber reinforced concrete under freeze-thaw conditions for pavement applications. Constr Build Mater 14(323):126599. https://doi.org/10.1016/j.conbuildmat.2022.126599

    Article  Google Scholar 

  52. Zhang D, Tan KH, Dasari A, Weng Y (2020) Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement Concr Compos 109:103512. https://doi.org/10.1016/j.cemconcomp.2020.103512

    Article  CAS  Google Scholar 

  53. Pruthviraj KN, Jagalur Mahalingasharma S, Patil S (2022) Experimental study on strength behaviour of concrete reinforced with natural fibers. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.11.065

    Article  Google Scholar 

  54. Thomas BC, Jose YS (2021) A study on characteristics of sisal fiber and its performance in fiber reinforced concrete. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.07.312

    Article  Google Scholar 

  55. Prakash Chandar S, Sangeeth Kumar SK (2022) Mechanical properties of fiber reinforced concrete – natural fibers: a review. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.08.362

    Article  Google Scholar 

  56. Kumar P, Roy R (2018) Study and experimental investigation of flow and flexural properties of natural fiber reinforced self compacting concrete. Proc Comput Sci 125:598–608. https://doi.org/10.1016/j.procs.2017.12.077

    Article  Google Scholar 

  57. Poongodi K, Murthi P, Gobinath R (2021) Evaluation of ductility index enhancement level of banana fibre reinforced lightweight self-compacting concrete beam. Mater Today: Proc 39:131–136. https://doi.org/10.1016/j.matpr.2020.06.397

    Article  CAS  Google Scholar 

  58. Poongodi K, Murthi P (2020) Impact strength enhancement of banana fibre reinforced lightweight self-compacting concrete. Mater Today: Proc 27:1203–1209. https://doi.org/10.1016/j.matpr.2020.02.108

    Article  CAS  Google Scholar 

  59. Kriker A, Debicki G, Bali A et al (2005) Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement Concr Compos 27:554–564. https://doi.org/10.1016/j.cemconcomp.2004.09.015

    Article  CAS  Google Scholar 

  60. Momoh EO, Osofero AI (2019) Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Constr Build Mater 221:745–761. https://doi.org/10.1016/j.conbuildmat.2019.06.118

    Article  Google Scholar 

  61. Nathalie K, Jacqueline S, Nadia S (2020) Fracture behavior of flax fibers reinforced earth concrete. Eng Fracture Mech. https://doi.org/10.1016/j.engfracmech.2020.107378

    Article  Google Scholar 

  62. Mahpour AR, Ventura H, Raso MA et al (2023) The effect of fibres and carbonation conditions on the mechanical properties and microstructure of lime/flax composites. Cement Concr Compos 138:104981–104981. https://doi.org/10.1016/j.cemconcomp.2023.104981

    Article  CAS  Google Scholar 

  63. Kouta N, Saliba J, Saiyouri N (2020) Effect of flax fibers on early age shrinkage and cracking of earth concrete. Constr Build Mater 254:119315. https://doi.org/10.1016/j.conbuildmat.2020.119315

    Article  Google Scholar 

  64. Koichi MINAMI, Masakazu TERAI Basic Study on Mechanical Properties of Bamboo Fiber Reinforced Concrete.

  65. Abirami R, Vijayan DS (2020) Experimental study on concrete properties using pineapple leaf fiber. Int J Adv Res Eng Technol (IJARET) 11:913–920. https://doi.org/10.34218/IJARET.11.6.2020.082

    Article  Google Scholar 

  66. Wang Y, Long W (2021) Complete stress–strain curves for pine needle fibre reinforced concrete under compression. Constr Build Mater 302:124134. https://doi.org/10.1016/j.conbuildmat.2021.124134

    Article  CAS  Google Scholar 

  67. Long W, Wang Y (2021) Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Constr Build Mater 278:122333. https://doi.org/10.1016/j.conbuildmat.2021.122333

    Article  CAS  Google Scholar 

  68. Tolga Cogurcu M (2022) Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete. Case Stud Constr Mater 16:e00970. https://doi.org/10.1016/j.cscm.2022.e00970

    Article  Google Scholar 

  69. Dávila-Pompermayer R, Lopez-Yepez LG, Valdez-Tamez P et al (2020) Lechugilla natural fiber as internal curing agent in self compacting concrete (SCC): mechanical properties, shrinkage and durability. Cement Concr Compos 112:103686. https://doi.org/10.1016/j.cemconcomp.2020.103686

    Article  CAS  Google Scholar 

  70. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    Article  CAS  Google Scholar 

  71. Guo A, Sun Z, Satyavolu J (2020) Impact of modified kenaf fibers on shrinkage and cracking of cement pastes. Constr Build Mater 264:120230. https://doi.org/10.1016/j.conbuildmat.2020.120230

    Article  CAS  Google Scholar 

  72. Abbas A-G, Nora F, Abdan K et al (2023) Experimental evaluation and statistical modeling of kenaf fiber-reinforced geopolymer concrete. Constr Build Mater 367:130228–130228. https://doi.org/10.1016/j.conbuildmat.2022.130228

    Article  CAS  Google Scholar 

  73. Elsaid A, Dawood M, Seracino R, Bobko C (2011) Mechanical properties of kenaf fiber reinforced concrete. Constr Build Mater 25:1991–2001. https://doi.org/10.1016/j.conbuildmat.2010.11.052

    Article  Google Scholar 

  74. Nithambigai G, Rameshwaran PM (2021) Effect of binders and hemp fibre in concrete. Mater Today: Proc 1(46):3791–3794. https://doi.org/10.1016/j.matpr.2021.02.029

    Article  CAS  Google Scholar 

  75. Tampi R, Parung H, Djamaluddin R, Amiruddin A (2020) Elasticity modulus concrete of abaca fiber. IOP Conf Series: Earth Environ Sci 473:012146. https://doi.org/10.1088/1755-1315/473/1/012146

    Article  Google Scholar 

  76. Tiwari S, Sahu AK, Pathak RP (2020) Mechanical properties and durability study of jute fiber reinforced concrete. IOP Conf Series: Mater Sci Eng 961:012009. https://doi.org/10.1088/1757-899x/961/1/012009

    Article  CAS  Google Scholar 

  77. Chen M, Ye L, Li H et al (2020) Flexural strength and ductility of moso bamboo. Constr Build Mater 246:118418. https://doi.org/10.1016/j.conbuildmat.2020.118418

    Article  Google Scholar 

  78. Al-Masoodi AHH, Kawan A, Kasmuri M et al (2016) Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement. Constr Build Mater 104:247–262. https://doi.org/10.1016/j.conbuildmat.2015.12.037

    Article  CAS  Google Scholar 

  79. MstS M, Hock LJ, Hossain MdS, Kang LS (2018) The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Constr Build Mater 178:518–528. https://doi.org/10.1016/j.conbuildmat.2018.05.169

    Article  CAS  Google Scholar 

  80. Sasikumar P, Nandhakumar P, Manju R (2022) An experimental work on high strength concrete with addition of sisal fibre. Nucl Atmosph Aerosols. https://doi.org/10.1063/50108053

    Article  Google Scholar 

  81. Li Z, Wang X, Wang L (2006) Properties of hemp fibre reinforced concrete composites. Compos A Appl Sci Manuf 37:497–505. https://doi.org/10.1016/j.compositesa.2005.01.032

    Article  CAS  Google Scholar 

  82. Zhou X, Ghaffar SH, Dong W et al (2013) Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Mater Des 49:35–47. https://doi.org/10.1016/j.matdes.2013.01.029

    Article  CAS  Google Scholar 

  83. Mansur MA, Aziz MA (1982) A study of jute fibre reinforced cement composites. Int J Cem Compos Lightweight Concrete 4(2):75–82. https://doi.org/10.1016/0262-5075(82)90011-2

    Article  Google Scholar 

  84. Anthony R, Awasthi SY, Singh P, Prasath Kumar VR (2020) An experimental and characteristic study of abaca fiber concrete. IOP Conf Series: Mater Sci Eng 912:032077. https://doi.org/10.1088/1757-899x/912/3/032077

    Article  CAS  Google Scholar 

  85. Kumar S, Gupta D, Sharma V et al (2023) Recent development in natural fiber composites, testing and fabrication methods: a review. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.02.073

    Article  Google Scholar 

  86. Rama Rao P, Ramakrishna G (2022) Oil palm empty fruit bunch fiber: surface morphology, treatment, and suitability as reinforcement in cement composites- a state of the art review. Cleaner Mater 6:100144. https://doi.org/10.1016/j.clema.2022.100144

    Article  Google Scholar 

  87. Grégoire M, Bar M, De Luycker E et al (2021) Comparing flax and hemp fibres yield and mechanical properties after scutching/hackling processing. Ind Crops Prod 172:114045. https://doi.org/10.1016/j.indcrop.2021.114045

    Article  CAS  Google Scholar 

  88. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos A Appl Sci Manuf 38:461–468. https://doi.org/10.1016/j.compositesa.2006.02.020

    Article  CAS  Google Scholar 

  89. Le Troëdec M, Rachini A, Peyratout C et al (2011) Influence of chemical treatments on adhesion properties of hemp fibres. J Colloid Interface Sci 356:303–310. https://doi.org/10.1016/j.jcis.2010.12.066

    Article  CAS  Google Scholar 

  90. Wei J, Meyer C (2014) Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Appl Surf Sci 289:511–523. https://doi.org/10.1016/j.apsusc.2013.11.024

    Article  CAS  Google Scholar 

  91. Alatshan F, Altlomate AM, Mashiri F, Alamin W (2017) Effect of date palm fibers on the mechanical properties of concrete. Int J Sustain Build Technol Urban Dev. https://doi.org/10.12972/susb.20170007

    Article  Google Scholar 

  92. Lim SK, Tiong HY, Woon KS (2018) Compressive strength and dimensional stability of palm oil empty fruit bunch fibre reinforced foamed concrete. E3S Web of Conf 65:02001. https://doi.org/10.1051/e3sconf/20186502001

    Article  CAS  Google Scholar 

  93. Al-Oraimi SK, Seibi AC (1995) Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Compos Struct 32:165–171. https://doi.org/10.1016/0263-8223(95)00043-7

    Article  Google Scholar 

  94. Althoey F, Hakeem IY, Hosen MdA et al (2022) Behavior of concrete reinforced with date palm fibers. Materials 15:7923. https://doi.org/10.3390/ma15227923

    Article  CAS  Google Scholar 

  95. Aljalawi NMF (2019) Effect of sustainable palm fiber on high strength concrete properties. IOP Conf Series: Mater Sci Eng 518:022004. https://doi.org/10.1088/1757-899x/518/2/022004

    Article  CAS  Google Scholar 

  96. Lee SW, Oh CL, Zain MRM, Yahya NA (2018) In: 14th International Conference on Concrete Engineering and Technology. IOP Conference Series: Materials Science and Engineering 431:012001. https://doi.org/10.1088/1757-899x/431/1/012001.

  97. Prakash Chandar S, Murugan D (2022) Experimental investigation on banana stem fibre in the production of M40 grade concrete: a review. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.09.354

    Article  Google Scholar 

  98. El-Nadoury WW (2020) Applicability of using natural fibers for reinforcing concrete. IOP Conf Series: Mater Sci Eng 809:012018. https://doi.org/10.1088/1757-899x/809/1/012018

    Article  CAS  Google Scholar 

  99. Nurwidayati R, Fardheny Asyifha AF (2021) Investigation on mechanical properties of fiber reinforced concrete. IOP Conf Series 758:012016–012016. https://doi.org/10.1088/1755-1315/758/1/012016

    Article  Google Scholar 

  100. Vidya Bharathi S, Vinodhkumar S, Saravanan MM (2021) Strength characteristics of banana and sisal fiber reinforced composites. IOP Conf Series: Mater Sci Eng 1055:012024. https://doi.org/10.1088/1757-899x/1055/1/012024

    Article  CAS  Google Scholar 

  101. Ren G, Yao B, Huang H, Gao X (2021) Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Constr Build Mater 286:122958. https://doi.org/10.1016/j.conbuildmat.2021.122958

    Article  Google Scholar 

  102. Solai Mathi S, Karthikeyan S, Johnpaul V et al (2021) WITHDRAWN: Experimental investigation on self compacting concrete with sisal fibre. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.10.1011

    Article  Google Scholar 

  103. Liu Y, Wang Z, Fan Z, Gu J (2020) Study on properties of sisal fiber modified foamed concrete. IOP Conf Series: Mater Sci Eng 744:012042. https://doi.org/10.1088/1757-899x/744/1/012042

    Article  CAS  Google Scholar 

  104. Syed H, Nerella R, Madduru SRC (2020) Role of coconut coir fiber in concrete. Mater Today: Proc 27:1104–1110. https://doi.org/10.1016/j.matpr.2020.01.477

    Article  CAS  Google Scholar 

  105. Naamandadin NA, Rosdi MS, Mustafa WA et al (2020) Mechanical behaviour on concrete of coconut coir fiber as additive. IOP Conf Series: Mater Sci Eng 932:012098. https://doi.org/10.1088/1757-899x/932/1/012098

    Article  CAS  Google Scholar 

  106. Walter Otunyo A, Dan Nyechieo N (2017) Mechanical properties and fracture behaviour of coconut fibre reinforced concrete (CFRC). Am J Civil Eng Arch 5:208–216. https://doi.org/10.12691/ajcea-5-5-5

    Article  CAS  Google Scholar 

  107. Nadgouda, K. (2014). Coconut fibre reinforced concrete. In: Thirteenth IRF International Conference, 14th September.

  108. Mydin MO, Rozlan NA, Ganesan S (2015) Experimental study on the mechanical properties of coconut fibre reinforced lightweight foamed concrete. J Mater Environ Sci 6(2):407–411

    CAS  Google Scholar 

  109. Nambiar RA, Haridharan MK (2021) Mechanical and durability study of high performance concrete with addition of natural fiber (jute). Mater Today: Proc 46:4941–4947. https://doi.org/10.1016/j.matpr.2020.10.339

    Article  CAS  Google Scholar 

  110. Olaoye Oluremi RA et al (2014) The use of fibre waste as complement in concrete for a sustainable environment. Innov Syst Des Eng 4(9):2222–2871

    Google Scholar 

  111. Huang J, Qiu S, Rodrigue D (2022) Parameters estimation and fatigue life prediction of sisal fibre reinforced foam concrete. J Market Res 20:381–396. https://doi.org/10.1016/j.jmrt.2022.07.096

    Article  Google Scholar 

  112. Ruano G, Bellomo F, López G et al (2020) Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Constr Build Mater 240:117856. https://doi.org/10.1016/j.conbuildmat.2019.117856

    Article  CAS  Google Scholar 

  113. Mohammed WH, Shambina SL, Ammash HK (2023) Reducing Effects of initial imperfection by investment in the orthotropic characteristics of laminated composite plate. Civil Eng J 9:1579–1596. https://doi.org/10.28991/cej-2023-09-07-03

    Article  Google Scholar 

  114. Asasutjarit C, Charoenvai S, Hirunlabh J, Khedari J (2009) Materials and mechanical properties of pretreated coir-based green composites. Compos B Eng 40:633–637. https://doi.org/10.1016/j.compositesb.2009.04.009

    Article  CAS  Google Scholar 

  115. Guo A, Sun Z, Satyavolu J (2019) Impact of chemical treatment on the physiochemical and mechanical properties of kenaf fibers. Ind Crops Prod 141:111726. https://doi.org/10.1016/j.indcrop.2019.111726

    Article  CAS  Google Scholar 

  116. Narendar R, Priya Dasan K (2014) Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Compos B Eng 56:770–779. https://doi.org/10.1016/j.compositesb.2013.09.028

    Article  CAS  Google Scholar 

  117. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos B Eng 42:1648–1656. https://doi.org/10.1016/j.compositesb.2011.04.001

    Article  CAS  Google Scholar 

  118. Park J-M, Kim P-G, Jang JE et al (2008) Interfacial evaluation and durability of modified Jute fibers/polypropylene (PP) composites using micromechanical test and acoustic emission. Composites Part B-Eng 39:1042–1061. https://doi.org/10.1016/j.compositesb.2007.11.004

    Article  CAS  Google Scholar 

  119. Ramadan R, Saad G, Awwad E et al (2017) Short-term durability of hemp fibers. Proc Eng 200:120–127. https://doi.org/10.1016/j.proeng.2017.07.018

    Article  Google Scholar 

  120. Rajesh G, Prasad AVR (2014) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Proc Mater Sci 5:2188–2196. https://doi.org/10.1016/j.mspro.2014.07.425

    Article  CAS  Google Scholar 

  121. Nayak SY, Shenoy Heckadka S, Seth A et al (2021) Effect of chemical treatment on the physical and mechanical properties of flax fibers: a comparative assessment. Mater Today: Proc 38:2406–2410. https://doi.org/10.1016/j.matpr.2020.07.380

    Article  CAS  Google Scholar 

  122. Perremans D, Hendrickx K, Verpoest I, Van Vuure AW (2018) Effect of chemical treatments on the mechanical properties of technical flax fibres with emphasis on stiffness improvement. Compos Sci Technol 160:216–223. https://doi.org/10.1016/j.compscitech.2018.03.030

    Article  CAS  Google Scholar 

  123. Boonterm M, Sunyadeth S, Dedpakdee S et al (2016) Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion. J Clean Prod 134:592–599. https://doi.org/10.1016/j.jclepro.2015.09.084

    Article  CAS  Google Scholar 

  124. Agwa IS, Omar OM, Tayeh BA, Abdelsalam BA (2020) Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete. Constr Build Mater 235:117541. https://doi.org/10.1016/j.conbuildmat.2019.117541

    Article  Google Scholar 

  125. Aslam F, Zaid O, Althoey F et al (2022) Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Struct Concr. https://doi.org/10.1002/suco.202200183

    Article  Google Scholar 

  126. de Bruijn PB, Jeppsson K-H, Sandin K, Nilsson C (2009) Mechanical properties of lime–hemp concrete containing shives and fibres. Biosys Eng 103:474–479. https://doi.org/10.1016/j.biosystemseng.2009.02.005

    Article  Google Scholar 

  127. Tronet P, Lecompte T, Picandet V, Baley C (2016) Study of lime hemp concrete (LHC) – Mix design, casting process and mechanical behaviour. Cement Concr Compos 67:60–72. https://doi.org/10.1016/j.cemconcomp.2015.12.004

    Article  CAS  Google Scholar 

  128. Nistratov AV, Klimenko NN, Pustynnikov IV, Vu LK (2022) thermal regeneration and reuse of carbon and glass fibers from waste composites. Emer Sci J 6:967–984. https://doi.org/10.28991/esj-2022-06-05-04

    Article  Google Scholar 

  129. Othuman Mydin MA, Zamzani NM, Ghani ANA (2019) Experimental data on compressive and flexural strengths of coir fibre reinforced foamed concrete at elevated temperatures. Data Brief 25:104320. https://doi.org/10.1016/j.dib.2019.104320

    Article  CAS  Google Scholar 

  130. Ramadan R, Jahami A, Khatib J et al (2023) Improving structural performance of reinforced concrete beams with phragmites australis fiber and waste glass additives. Appl Sci 13:4206–4206. https://doi.org/10.3390/app13074206

    Article  CAS  Google Scholar 

  131. Olukunle BG, Uche NB, Efomo AO et al (2018) Data on acoustic behaviour of coconut fibre-reinforced concrete. Data Brief 21:1004–1007. https://doi.org/10.1016/j.dib.2018.10.133

    Article  Google Scholar 

  132. Barbhuiya S, Bhusan Das B (2022) A comprehensive review on the use of hemp in concrete. Constr Build Mater 341:127857. https://doi.org/10.1016/j.conbuildmat.2022.127857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jahami.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahami, A., Zeaiter, N. & Cheaib, M. Reviewing the potential: a comprehensive review of natural fibers (NFs) in structural concrete and their multifaceted influences. Innov. Infrastruct. Solut. 9, 102 (2024). https://doi.org/10.1007/s41062-024-01384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01384-x

Keywords

Navigation