Skip to main content
Log in

Temperature and humidity sensor technology for concrete health assessment: a review

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The information of vital parameters within the concrete form the basis of maintenance, rehabilitation, repairing, upgradation or rebuilding of concrete structures. The information from the concrete helps in preempting further action or sequence of procedures, for long and sustainable service life. The objective of this review paper is to update and analyze the research that has been undertaken to capture and assess the thermal and humidity changes in concrete structure through sensors. The review while discussing the importance of structural health monitoring of concrete structures assesses the performances of the latest relevant sensor technology in vogue. Due to the environmental robustness, minimal size, quick response and high accuracy, major emphasis has been laid on the design of sensors based on fiber optic and Bragg grating. Both these technologies shall continue progress and generate more efficient and path breaking sensors in near future. Currently, the problems of relay, recalibration or replacement over a long period of time remain the big issues, in sensor technology and its advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Relevant data will be made available upon request.

References

  1. Hobbs DW (2001) Concrete deterioration: causes, diagnosis, and minimizing risk. Int Mater Rev 46(3):117–144

    Article  Google Scholar 

  2. Abdel-Jaber H, Glisic B (2016) Structural health monitoring methods for the evaluation of prestressing forces and prerelease cracks. Front Built Environ 2:20

    Article  Google Scholar 

  3. Brownjohn JM (2007) Structural health monitoring of civil infrastructure. Philos Trans A Math Phys Eng Sci 365(1851):589–622

    Google Scholar 

  4. López-Higuera JM, Rodriguez Cobo L, Incera Q, Cobo A (2011) Fiber optic sensors in structural health monitoring. J Lightwave Technol 29(4):587–608

    Article  Google Scholar 

  5. Antonella T (2013) Photonics for safety and security. World Scientific Publishing, USA

    Google Scholar 

  6. Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Digest 38(2):91–130

    Article  Google Scholar 

  7. Balageas D (2010) Introduction to structural health monitoring. In: Balageas D, Fritzen CP, Güemes A (eds) Structural health monitoring. Wiley, New Jersey, pp 13–44

    Google Scholar 

  8. Ramakrishnan M, Rajan G, Semenova Y, Boczkowska A, Doma´ nski A, Wolinski T, Farrell G, (2013) Measurement of thermal elongation induced strain of a composite material using a polarization maintaining photonic crystal fiber sensor. Sens Actuat A Phys 190:44–51

    Article  Google Scholar 

  9. Noel AB, Abdaoui A, Elfouly T, Ahmed MH, Badawy A, Shehata MS (2017) Structural health monitoring using wireless sensor networks: a comprehensive survey. IEEE Commun Surv Tut 19(3):1403–1423

    Article  Google Scholar 

  10. Ou J, Li H (2010) Structural health monitoring in mainland china: review and future trends. Struct Health Monit 9(3):219–231

    Article  Google Scholar 

  11. French CE, Shield CK, Stolarski HK, Hedegaard BD, Jilk BJ (2012) Instrumentation, Monitoring, and Modeling of the I-35W Bridge, Report MN/RC 2014–39, Monitoring Instrumentation of I35W Bridge, Minnesota Department of Transportation, St. Paul.

  12. Hedegaard BD (2014) Modeling and Monitoring the Long-term Behavior of Posttensioned Concrete Bridges, University of Minnesota.

  13. Zhang M, Liu ZH, Ma YW, Zhang Y, Zhang YX, Yang XH, Zhang JZ, Geng T, Yuan LB (2022) Gelatin-coated long period fiber grating humidity sensor with temperature compensation. Opt Eng 61(2):027104

    Article  Google Scholar 

  14. Chen N, Zhou X, Li XG (2021) Highly sensitive humidity sensor with low temperature cross-sensitivity based on a polyvinyl alcohol coating tapered fiber. IEEE Trans Instrum Meas 70:1–8

    Google Scholar 

  15. Cheng JN (2020) In-fiber Mach-Zehnder interferometer based on multi-core microfiber for humidity and temperature sensing. Appl Opt 59(3):756–763

    Article  Google Scholar 

  16. Pevec S, Donlagic D (2015) Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature. Opt Lett 40(23):5646–5649

    Article  Google Scholar 

  17. Merzbacher C, Kersey A, Friebele E (1999) Fiber optic sensors in concrete structures: a review, in: K.T.V. Grattan, B.T. Meggitt (Eds.), Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing Series, Springer, USA, 1–24

  18. Glisic B, Inaudi D (2008) Fibre optic methods for structural health monitoring. Wiley, New Jersey

    Google Scholar 

  19. Lee B (2003) Review of the present status of optical fiber sensors. Opt Fiber Technol 9(2):57–79

    Article  Google Scholar 

  20. Leung CKY (2001) Fiber optic sensors in concrete: the future. Ndt E Int 34(2):85–94

    Article  Google Scholar 

  21. Ramakrishnan M, Rajan G, Semenova Y, Farrell G (2016) Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1):99

    Article  Google Scholar 

  22. Ansari F (1997) State-of-the-art in the applications of fiber-optic sensors to cementitious composites. Cem Concr Compos 19(1):3–19

    Article  Google Scholar 

  23. Maria de Fátima FD, Radwan A (2017) Optical Fiber Sensors for LoT and Smart Devices, Springer.

  24. Moyo P, Brownjohn JMW, Suresh R (2005) Tjin, Development of fiber Bragg grating sensors for monitoring civil infrastructure. Eng Struct 27(12):1828–1834

    Article  Google Scholar 

  25. Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15(8):1263–1276

    Article  Google Scholar 

  26. Yashiro S, Okabe T, Toyama N, Takeda N (2007) Monitoring damage in holed laminates using embedded chirped FBG sensors. Int J Solids Struct 44:603–613

    Article  Google Scholar 

  27. Rao YJ (2006) Recent progress in fiber-optic extrinsic fabry-perot interferometric sensors. Opt Fiber Technol 12:227–237

    Article  Google Scholar 

  28. Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS, Choi HY (2012) Interferometric fiber optic sensors. Sensors 12:2467–2486

    Article  Google Scholar 

  29. Ohtsu M (1996) The history and development of acoustic emission in concrete engineering. Mag Concr Res 48(177):321–330

    Article  Google Scholar 

  30. Dumoulin C, Karaiskos G, Sener JY, Deraemaeker A (2014) Online monitoring of cracking in concrete structures using embedded piezoelectric transducers. Smart Mater Struct 23(11):115016

    Article  Google Scholar 

  31. Nanni F, Ruscito G, Forte G, Gusmano G (2007) Design, manufacture and testing of self-sensing carbon fibre-glass fibre reinforced polymer rods. Smart Mater Struct 16(6):2368–2374

    Article  Google Scholar 

  32. Ceysson O, Risson T, Salvia M (1996) Carbon fibres: sensor components for smart materials. In: proc SPIE 2779, 3rd international conference on intelligent materials and 3rd european conference on smart structures and materials, pp 136–142

  33. Chen PW, Chung DD (1993) Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater Struct 2(1):22

    Article  Google Scholar 

  34. Wang X, Fu X, Chung D (1999) Strain sensing using carbon fiber. J Mater Res 14(3):790–802

    Article  Google Scholar 

  35. Cosentino P, Grossman B (1997) Development of fiber optic dynamic weigh-inmotion system, Florida Department of Transportation, Tallahassee, FL

  36. Mimbela L, Pate J, Copeland S, Kent P, Hamrick J (2003) Applications of fiber optics sensors in weigh-in-motion (WIM) systems for monitoring truck weights on pavements and structures, New Mexico Department of Transportation, Santa Fe, NM,

  37. Fuhr P, Huston D (1998) Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors. Smart Mater Struct 7(2):217

    Article  Google Scholar 

  38. Weng X, Zhu H-H, Chen J, Liang D, Shi B, Zhang C-C (2014) Experimental investigation of pavement behavior after embankment widening using a fiber optic sensor network. Struct Health Monit Int J 14(1):46–56

    Article  Google Scholar 

  39. Wang J, Tang J, Chang H (2006) Fiber Bragg grating sensors for use in pavement structural strain-temperature monitoring, in: Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego

  40. Oliveira R, Bilro L, Nogueira R, Marques THR, Cordeiro CMB (2019) Simultaneous detection of humidity and temperature through an adhesive based Fabry-P´erot cavity combined with polymer fiber Bragg grating. Opt Lasers Eng 114:37–43

    Article  Google Scholar 

  41. Buenfeld N (2011) Editorial: automated monitoring of concrete structures: research opportunities. Mag Concr Res 63(2):79–80

    Article  Google Scholar 

  42. Norris A, Saafi M, Romine P (2008) Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr Build Mater 22(2):111–120

    Article  Google Scholar 

  43. Dai X, Gao S, Pan K, Zhu J, Rashvand HF (2017) Wireless piezoelectric sensor systems for defect detection and localization. In: Rashvand HF, Abedi A (eds) Wireless sensor systems for extreme environments: space. Wiley, Underwater, pp 201–219

    Chapter  Google Scholar 

  44. Gallucci L, Menna C, Angrisani L, Asprone D, Moriello RSL, Bonavolontà F, Fabbrocino F (2017) An embedded wireless sensor network with wireless power transmission capability for the structural health monitoring of reinforced concrete structures. Sensors 17(11):2566

    Article  Google Scholar 

  45. Cabezas J, Sánchez-Rodríguez T, Gómez-Galán J, Cifuentes H, González Carvajal R (2018) Compact embedded wireless sensor-based monitoring of concrete curing. Sensors 18(3):876

    Article  Google Scholar 

  46. Bundesnetzagentur (2019) RFID, das kontaktlose Informations system; Technical Report; Bundesministerium für Wirtschaft und Energie: Berlin, Germany

  47. Tamimi AK, Abdalla JA, Sakka ZI (2008) Prediction of long term chloride diffusion of concrete in harsh environment. Constr Build Mater 22(5):829–836

    Article  Google Scholar 

  48. Romanova A, Mahmoodian M, Alani MA (2014) Influence and interaction of temperature, H2S and pH on concrete sewer pipe corrosion. Int J Civ Architect Struct Urban Sci Eng 8(6):592–595

    Google Scholar 

  49. Vollertsen J, Nielsen AH, Jensen HS, Wium-Andersen T, Hvitved- Jacobsen T (2008) Corrosion of concrete sewers-the kinetics of hydrogen sulfide oxidation. Sci Total Environ 394(1):162–170

    Article  Google Scholar 

  50. Sun X (2015) Improving the understanding of concrete sewer corrosion through investigations of the gaseous hydrogen sulfide uptake and transformation processes in the corrosion layer doctoral thesis. Central South University, PR China

    Book  Google Scholar 

  51. Bofang Z (2013) Thermal stresses and temperature control of mass concrete. Butterworth-Heinemann

    Google Scholar 

  52. Deng J, Li Y, Wu S (2016) The research on temperature control of mass concrete, in: Advances in Energy, Environment and Materials Science: Proceedings of the International Conference on Energy, Environment and Materials Science (EEMS 2015), CRC Press, pp 349–352

  53. Mathas C (2011) Temperature Sensors-The Basics, [Available from: https://www.digikey.com.au/en/articles/techzone/2011/oct/temperature-sensors-thebasics], digikey.com.

  54. Huynh T (2015) Fundamentals of thermal sensors, in: C.M. Jha (Ed.), Thermal Sensors, Springer: London 2015, pp 5–42

  55. Baeza FJ, Galao O, Zornoza E, Garces P (2013) Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater Des 51:1085–1094

    Article  Google Scholar 

  56. Han B, Yu X, Ou J (2014) Sensing properties of self-sensing concrete Self-Sensing Concrete in Smart Structures. Elsevier, Amsterdam, The Netherlands, pp 95–162

    Book  Google Scholar 

  57. Demirel B, Yazicioglu S, Orhan N (2006) Electrical behaviour of carbon fibre-reinforced concrete with increasing loading in varying and constant frequencies. Mag Concr Res 58:691–697

    Article  Google Scholar 

  58. Han B, Ding S, Yu X (2015) Intrinsic self-sensing concrete and structures: a review. Measurement 59:110–128

    Article  Google Scholar 

  59. Strangfeld C, Johann S, Bartholmai M (2019) Smart RFID sensors embedded in building structures for early damage detection and long-term monitoring MDPI. Sensor 19(24):5541

    Article  Google Scholar 

  60. Meltz G., Dunphy J., Glenn, Farina J., Leonberger F. (1987) Fiber optic temperature and strain sensors, in: Proc. SPIE 0798, Fiber Optic Sensors II, pp 104– 115

  61. Alwis LS, Sun T, Grattan KT (2016) Fibre grating-based sensor design for humidity measurement in chemically harsh environment. Proc Eng 168:1317–1320

    Article  Google Scholar 

  62. Fernando C, Bernier A, Banerjee S, Kahandawa G, Eppaarchchi GJ (2017) An investigation of the use of embedded FBG sensors to measure temperature and strain inside a concrete beam during the curing period and strain measurements under operational loading, 6th Asia pacific workshop on structural health monitoring. Proced Eng 188:393–399

    Article  Google Scholar 

  63. Rinaudo P, Torre BS, Paya-Zaforteza I, Calderón PA, Sales S (2015) Evaluation of new regenerated fiber Bragg grating high-temperature sensors in an ISO834 fire test. Fire Saf J 71:332–339

    Article  Google Scholar 

  64. Torres Górriz B, Payá-Zaforteza I, CalderónGarcía PA, Sales MS (2017) New fiber optic sensor for monitoring temperatures in concrete structures during fires. Sens Actuat A 254:116–125

    Article  Google Scholar 

  65. Barrera D, Finazzi V, Villatoro J, Sales S, Pruneri V (2012) Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications. IEEE Sens J 12(1):107

    Article  Google Scholar 

  66. Habisreuther T, Elsmann T, Pan Z, Graf A, Willsch R, Schmidt MA (2015) Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl Therm Eng 91(2015):860–865

    Article  Google Scholar 

  67. Bao Y, Hoehler MS, Smith CM, Bundy M, Chen G (2017) Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors. Smart Mater Struct 26:105034–105045

    Article  Google Scholar 

  68. Bao Y, Chen Y, Hoehler MS, Smith CM, Bundy M, Chen G (2016) Experimental analysis of steel beams subjected to fire enhanced by Brillouin scattering based fiber optic sensor data. J Struct Eng 143(1):04016143

    Article  Google Scholar 

  69. Haoyang Peng H, Peng Li P, Yunfei Xiang Y, Chen W, Zhou S, Ning Yang N, Qiao Y (2020) A positioning method of temperature sensors for monitoring dam global thermal field. Front Mater 7:587738

    Article  Google Scholar 

  70. Kim J, Luis R, Smith MS, Figueroa JA, Malocha DC, Nam BH (2015) Concrete temperature monitoring using passive wireless surfaceacoustic wave sensor system. Sens Actuat A 224:131–139

    Article  Google Scholar 

  71. Chen H, Zhou S, Deng F, Zou J, Wu X, Fu WZ (2018) Novel concrete-temperature monitoring method by using embedded passive wireless sensor. Mag Concr Res 70(9):452–458

    Article  Google Scholar 

  72. Chen Z, Deng F, Fu Z, Wu X (2018) Design of an ultra-low power wireless temperature sensor based on backscattering mechanism. Sens Imag 19(28):1

    Google Scholar 

  73. Deng F, He Y, Li B, Zhang L, Wu X, Fu Z, Zuo L (2015) Design of an embedded CMOS temperature sensor for passive RFID tag chips. Sensors 15(5):11442–11453

    Article  Google Scholar 

  74. Liu Y, Deng F, He Y, Li B, Liang Z, Zhou S (2017) Novel concrete temperature monitoring method based on an embedded passive RFID sensor tag. Sensors 17(7):1463

    Article  Google Scholar 

  75. Federico MD, Ceminari P (2019) Novel time-domain CMOS temperature sensor for passive RFID Tag, 2019 argintine conference on electronics, IEEE Explore, 18656076.

  76. Farahani H, Wagiran R, Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5):7881–7939

    Article  Google Scholar 

  77. Yamazoe N, Shimizu Y (1986) Humidity sensors: principles and applications. Sens Actuat 10(3–4):379–398

    Article  Google Scholar 

  78. Gupta B (2001) A novel probe for a fiber optic humidity sensor. Sens Actuat B Chem 80(2):132–135

    Article  Google Scholar 

  79. Khijwania SK, Srinivasan KL, Singh JP (2005) Performance optimized optical fiber sensor for humidity measurement. Opt Eng 44(3):034401

    Article  Google Scholar 

  80. Michie WC, Thursby G, McLean A, Culshaw B, Verwilghen B, Voet M (1997) Fibre optic sensor for distributed water ingress detection and humidity measurement. In: 12th international conference on optical fiber sensors, Optical Society of America, OFB4, 634–637.

  81. Michie W, Culshaw B, McKenzie I, Konstantakis M, Graham N, Moran C, Santos F, Bergqvist E, Carlstrom B (1995) Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems. Opt Lett 20(1):103–105

    Article  Google Scholar 

  82. André PS, Varum H, Antunes P, Ferreira L, Sousa MG (2012) Monitoring of the concrete curing process using plastic optical fibers. Measurement 45(3):556–560

    Article  Google Scholar 

  83. Strangfeld C, Johann S, Müller M, Bartholmai M (2017) Embedded passive RFIDbased sensors for moisture monitoring in concrete. IEEE Sens 311:1–3

    Google Scholar 

  84. Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129(19):6070–6071

    Article  Google Scholar 

  85. Zhang Y, Yu K, Jiang D, Zhu Z, Geng H, Luo L (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242(1–2):212–217

    Article  Google Scholar 

  86. Mintova S, Mo S, Bein T (2001) Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem Mater 13(3):901–905

    Article  Google Scholar 

  87. Li J, Zhang J, Sun H, Yang Y, Ye Y, Cui J, He W, Yong X, Xie Y (2020) An optical fiber sensor based on carboxymethyl cellulose/carbon nanotubes composite film for simultaneous measurement of relative humidity and temperature. Optics Commun 467:125740

    Article  Google Scholar 

  88. Li M, Ma C, Li D, Bao S, Jin J, Zhang Y, Liu Q, Liu M, Zhang Y, Li T, Hu H, Wu J (2023) Dual-parameter optical fiber sensor for temperature and humidity based on PMMA-microsphere and FBG composite structure. Opt Fiber Technol 78:103292

    Article  Google Scholar 

  89. Dan S, Qiao XG, Rong QZ, Sun H, Zhang J, Bai ZY, Du YY, Feng DY, Wang YP, Hu ML, Feng ZY (2013) A fiber Fabry-P´erot interferometer based on a PVA coating for humidity measurement. Opt Commun 311:107–110

    Article  Google Scholar 

  90. Zhao Y, Tong RJ, Chen MQ, Xia F (2019) Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sens Actuat B 284:96–102

    Article  Google Scholar 

  91. Li M, Yin JW, Yan WL, Cong AM, Li HJ, Ma WQ (2021) Ultra-longer fiber cantilever taper for simultaneous measurement of temperature and relative humidity. Chin Phys B 30(11):114210

    Article  Google Scholar 

  92. Dong ZY, Zhang GB, Jin YQ, Zhou J, Guan JN, Tong ZJ, Wei ZC, Tan CH, Wang FQ, Meng HY (2022) Hydroxyethyl cellulose sensitized SMDMS structure with optical fiber relative humidity and temperature simultaneous measurement sensor. Opt Express 30(2):1152–1166

    Article  Google Scholar 

  93. Peters K (2010) Polymer optical fiber sensors—a review. Smart Mater Struct 20(2010):013002

    Google Scholar 

  94. Corres JM, Matias IR, Hernaez M, Bravo J, Arregui FJ (2008) Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles. IEEE Sens J 8:281–285

    Article  Google Scholar 

  95. Sharma AK, Gupta A (2013) Design of a plasmonic optical sensor probe for humidity-monitoring. Sens Actuat B 188:867–871

    Article  Google Scholar 

  96. Lokman A, Nodehi S, Batumalay M, Arof H, Ahmad H, Harun SW (2014) Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite. Microw Opt Technol Lett 56:380–382

    Article  Google Scholar 

  97. Yan G, Liang Y, Lee E-H, He S (2015) Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement. Opt express 23:15624–15634

    Article  Google Scholar 

  98. SmartRock2TM (2018) [Available from: https://www.giatecscientific.com/smartrock2/], Giatec.

  99. The effects of temperature on concrete curing (2018) [Available from: https://www.tempcon.co.uk/temperature-monitoring-concrete-curing/], TEMPCON.

  100. Concrete Sensors (2018) [Available from: http://www.concretesensors.com/durable-wireless-sensors/]

  101. Chang CY, Hung SS (2012) Implementing RFIC and sensor technology to measure temperature and humidity inside concrete structures. Constr Build Mater 26(1):628–637

    Article  Google Scholar 

  102. Barroca N, Borges LM, Velez FJ, Monteiro F, Górski M, Castro-Gomes J (2013) Wireless sensor networks for temperature and humidity monitoring within concrete structures. Constr Build Mater 40:1156–1166

    Article  Google Scholar 

  103. Zou X, Chao A, Tian Y, Wu N, Zhang H, Yu TY, Wang X (2012) An experimental study on the concrete hydration process using fabry-perot fiber optic temperature sensors. Measurement 45(5):1077–1082

    Article  Google Scholar 

  104. Qu Z, Jiang P, Zhang W (2020) Development and application of infrared thermography non-destructive testing techniques. Sensors 20(14):3851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript properly credits the meaningful contributions of co-authors and co-researchers. KZF contributed to methodology, writing, reviewing and editing. ASS contributed to reviewing and editing. MIA contributed to reviewing and editing. Prof. RD contributed to reviewing and editing.

Corresponding author

Correspondence to Khatib Zada Farhan.

Ethics declarations

Conflict of interest

This is to certify that the authors of the above listed paper have no conflict of interest. The authors declare that they have no competing interest and the work is original.

Ethical approval

Ethics approval was not required for this review manuscript.

Informed consent

Informed consent was not required for this review manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, K.Z., Shihata, A.S., Anwar, M.I. et al. Temperature and humidity sensor technology for concrete health assessment: a review. Innov. Infrastruct. Solut. 8, 276 (2023). https://doi.org/10.1007/s41062-023-01255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01255-x

Keywords

Navigation