Skip to main content

Advertisement

Log in

Sugar industry waste produced geopolymer concrete and its compressive strength prediction via statistical analysis and artificial intelligence approach

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Concrete innovations of the highest caliber have contributed in the development of cementless geopolymer concrete (geo-con) that is sustainable and eco-friendly. Various by-products/wastes (such as fly ash (FA), ground granulated blast furnace slag (GGBS)) generated by various industries (such as coal-fired power generating industry, iron industry) have come to life in geo-con, appearing to be a hopeful strategy from an environmental standpoint. A lot of research has been done in order to develop geo-cons from wastes, and one example may be found in sugarcane waste. With increasing demand for sugarcane by-products, the wastages while processing these by products are also increasing. A major chunk of this wastage is sugar cane bagasse ash (SBA) which is produced by burning sugarcane bagasse in the factory to add up to the environmental pollution. Keeping these aspects in mind, partial utilization of SBA along with FA and GGBS was considered in this study. Wherein FA and GGBS are well established precursors for the development of geo-con. This study investigated the effects of SBA (0–15%) and GGBS (0–40%) addition on Fly ash-based geo-con (FA-GPC) as a substitute for FA at different curing temperatures (60–90 °C) and sodium hydroxide/sodium silicate (NaOH/Na2SiO3) ratios (1:1–1:2.5). The results demonstrated that the workability of resultant geo-con reduced as percentage of SBA and GGBS increased. Similar trend was also observed with increasing NaOH/Na2SiO3 ratios. Furthermore, the compressive strength results reveal that FA to SBA ratio has negative effect on compressive strength but combined effect of SBA and GGBS ratio along with FA has positive effect on compressive strength. Conduction of experiment for compressive strength is a drudgery process. To eliminate that, two major statistical methods, multiple linear regression analysis and polynomial regression analysis, with accuracy of + 5.05 to − 3.05% and + 4.94 to − 3.40%, respectively, were developed. An artificial neural network model with an accuracy of + 0.44 to − 3.10% was also developed. Statistical parameters such as MSE and R2 were used to further understand prediction accuracy and compare the models. The results show that the ANN model predicts compressive strength more accurately than other models. This study intends to describe a unique process for using sugarcane industrial waste in the form of SBA, with results demonstrating good compressive strength for geo-con. Also, the developed models for compressive strength prediction can be used effectively to reduce experimental drudgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Ahmad A, Ahmad W, Chaiyasarn K, Ostrowski KA, Aslam F, Zajdel P, Joyklad P (2021) Prediction of geopolymer concrete compressive strength using novel machine learning algorithms. Polymers 13(19):3389

    Article  Google Scholar 

  2. Ahmed FB, Biswas RK, Ahsan KA, Islam S, Rahman MR (2021) Estimation of strength properties of geopolymer concrete. Mater Today Proc 44:871–877

    Article  Google Scholar 

  3. Akbar A, Farooq F, Shafique M, Aslam F, Alyousef R, Alabduljabbar H (2021) Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers. J Build Eng 33:101492

    Article  Google Scholar 

  4. Ali MS, Sachan AK (2022) A review on the durability and applicability of Geopolymer concrete from the recent research studies. Mater Today Proc 52:911–922

    Article  Google Scholar 

  5. ASTM Committee C-09 on Concrete and Concrete Aggregates (2013) Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete. ASTM international

  6. ASTM, C. 143/C-143 M (2000) Standard test method for slump of hydraulic-cement concrete

  7. Awoyera PO, Kirgiz MS, Viloria A, Ovallos-Gazabon D (2020) Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. J Market Res 9(4):9016–9028

    Google Scholar 

  8. Bergmann JC, Trichez D, Sallet LP, e Silva FCDP, Almeida JR (2018) Technological advancements in 1G ethanol production and recovery of by-products based on the biorefinery concept. In: Advances in sugarcane biorefinery. Elsevier, pp 73–95

  9. Bheel ND, Meghwar SK, Abbasi RA, Ghunio IA, Shaikh ZH (2019) Use of sugarcane bagasse ash as cement replacement materials in concrete. In: International conference on sustainable development in civil engineering, Jamshoro, Pakistan, pp 1–4

  10. BIS I (2016) 383 (2016) Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards, New Delhi

  11. Bouaissi A, Li LY, Abdullah MMAB, Bui QB (2019) Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr Build Mater 210:198–209

    Article  Google Scholar 

  12. Cai J, Li X, Tan J, Vandevyvere B (2020) Thermal and compressive behaviors of fly ash and metakaolin-based geopolymer. J Build Eng 30:101307

    Article  Google Scholar 

  13. Chithambaram SJ, Kumar S, Prasad MM, Adak D (2018) Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Struct Concr 19(4):1202–1209

    Article  Google Scholar 

  14. Chuewangkam N, Nachaithong T, Chanlek N, Thongbai P, Pinitsoontorn S (2022) Mechanical and dielectric properties of fly ash geopolymer/sugarcane bagasse ash composites. Polymers 14(6):1140

    Article  Google Scholar 

  15. Dao DV, Ly HB, Trinh SH, Le TT, Pham BT (2019) Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 12(6):983

    Article  Google Scholar 

  16. Das SK, Shrivastava S (2021) Siliceous fly ash and blast furnace slag based geopolymer concrete under ambient temperature curing condition. Struct Concr 22:E341–E351

    Article  Google Scholar 

  17. Davidovits J (2017) Geopolymers: ceramic-like inorganic polymers. J Ceram Sci Technol 8(3):335–350

    Google Scholar 

  18. Faisal M, Muhammad K (2016) Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries and naturally available china clay. J Clean Prod 129:491–495

    Article  Google Scholar 

  19. Ganesh AC, Muthukannan M (2021) Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J Clean Prod 282:124543

    Article  Google Scholar 

  20. Ghafoor MT, Khan QS, Qazi AU, Sheikh MN, Hadi MNS (2021) Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr Build Mater 273:121752

    Article  Google Scholar 

  21. Gupta T, Rao MC (2022) Prediction of compressive strength of geopolymer concrete using machine learning techniques. Struct Concr 23(5):3073–3090

    Article  Google Scholar 

  22. IS 10086–1982, Indian Standard specification for moulds for use in tests of cement and concrete-V Reprint December 1995, Bureau of Indian Standard, New Delhi-110 002

  23. IS:1199–1959- Methods of sampling and analysis of concrete

  24. IS:516–1959- Methods of tests for strength of concrete

  25. Kathirvel P, Gunasekaran M, Sreekumaran S, Krishna A (2020) Effect of partial replacement of ground granulated blast furnace slag with sugarcane bagasse ash as source material in the production of geopolymer concrete. Mater Sci 26(4):477–481

    Google Scholar 

  26. Kodur V (2014) Properties of concrete at elevated temperatures. International Scholarly Research Notices, 2014

  27. Mathapati M, Amate K, Prasad CD, Jayavardhana ML, Raju TH (2022) A review on fly ash utilization. Mater Today Proc 50:1535–1540

    Article  Google Scholar 

  28. Mehta A, Siddique R, Singh BP, Aggoun S, Łagód G, Barnat-Hunek D (2017) Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Constr Build Mater 150:817–824

    Article  Google Scholar 

  29. Minnu SN, Bahurudeen A, Athira G (2021) Comparison of sugarcane bagasse ash with fly ash and slag: an approach towards industrial acceptance of sugar industry waste in cleaner production of cement. J Clean Prod 285:124836

    Article  Google Scholar 

  30. Mohapatra AK, Bera DK, Nayak BD, Rath AK (2020) Behaviour of geopolymer concrete in ambient curing using industrial wastes. Indian Concr J 5:32–42

    Google Scholar 

  31. Moretti JP, Nunes S, Sales A (2018) Self-compacting concrete incorporating sugarcane bagasse ash. Constr Build Mater 172:635–649

    Article  Google Scholar 

  32. Oyebisi S, Ede A, Olutoge F, Omole D (2020) Geopolymer concrete incorporating agro-industrial wastes: effects on mechanical properties, microstructural behaviour and mineralogical phases. Constr Build Mater 256:119390

    Article  Google Scholar 

  33. Patankar SV, Ghugal YM, Jamkar SS (2015) Mix design of fly ash based geopolymer concrete. In: Advances in structural engineering. Springer, New Delhi, pp 1619–1634

  34. Pham TT, Nguyen TT, Nguyen LN, Nguyen PV (2020) A neural network approach for predicting hardened property of geopolymer concrete. GEOMATE J 19(74):176–184

    Article  Google Scholar 

  35. Qin TS, Lim NHAS, Jun TZ, Ariffin NF (2022) Effect of low molarity alkaline solution on the compressive strength of fly ash based geopolymer concrete. Int J Sustain Build Technol Urban Dev 13(2):155–164

    Google Scholar 

  36. Saloma S, Hanafiah H, Pratiwi KI (2016) Effect NaOH concentration on bagasse ash based geopolymerization. In: MATEC web of conferences, vol 78, no 1. EDP Sciences, pp 1–10

  37. Sayeed MIM, Patil VA, Takkalaki SR (2021) An experimental study on short term durability and hardened properties of baggasse ash and fly ash based geo polymer concrete. Available at SSRN 3802324.

  38. Shahmansouri AA, Yazdani M, Ghanbari S, Bengar HA, Jafari A, Ghatte HF (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697

    Article  Google Scholar 

  39. Sikder A, Mishra J, Krishna RS, Ighalo JO (2022) Evaluation of the mechanical and durability properties of geopolymer concrete prepared with C-glass fibers. Arab J Sci Eng 1–16

  40. Sikder A, Mishra J, Nanda B, Patro S (2023) Geopolymer concrete as a revolutionary green building material for modern infrastructures. Encyclopedia of Green Materials, 1–9

  41. Sikder A, Saha P (2021) Effect of different types of waste as binder on durability properties of geopolymer concrete: a review. In: IOP conference series: earth and environmental science, vol 796, no 1. IOP Publishing, p 012018

  42. Singh K (2021) Experimental study on metakolin and baggashe ash based geopolymer concrete. Mater Today Proc 37:3289–3295

    Article  Google Scholar 

  43. Sreenivasulu C, Guru Jawahar J, Sashidhar C (2018) Predicting compressive strength of geopolymer concrete using NDT techniques. Asian J Civ Eng 19(4):513–525

    Article  Google Scholar 

  44. Srinivas D, Suresh N, Lakshmi NH (2021) Experimental investigation on bagasse ash based geopolymer concrete subjected to elevated temperature. In: IOP conference series: earth and environmental science, vol 796, no 1. IOP Publishing, p 012028

  45. Thoudam N, Thokchom S (2019) Flyash and sugarcane bagasse ash as geopolymer composite. J Civ Eng Environ Technol 6:393–396

    Google Scholar 

  46. Toufigh V, Jafari A (2021) Developing a comprehensive prediction model for compressive strength of fly ash-based geopolymer concrete (FAGC). Constr Build Mater 277:122241

    Article  Google Scholar 

  47. Tripathy A, Acharya PK (2022) Characterization of bagasse ash and its sustainable use in concrete as a supplementary binder: a review. Constr Build Mater 322:126391

    Article  Google Scholar 

  48. Xu Q, Ji T, Gao SJ, Yang Z, Wu N (2018) Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials 12(1):39

    Article  Google Scholar 

  49. Yadav AL, Sairam V, Srinivasan K, Muruganandam L (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231

    Article  Google Scholar 

  50. Yang C, Gupta R (2018) Prediction of the compressive strength from resonant frequency for low-calcium fly ash-based geopolymer concrete. J Mater Civ Eng 30(4):04018050

    Article  Google Scholar 

  51. Yousuf A, Manzoor SO, Youssouf M, Malik ZA, Khawaja KS (2020) Fly ash: production and utilization in India-an overview. J Mater Environ Sci 11(6):911–921

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to KIIT University, Bhubaneswar, Odisha, India: for the guidance to plan the experimental investigation. The authors also acknowledge the support of River Research Institute, I&W Directorate, Mohanpur, West Bengal, India, for their help in conducting the experiments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnachandra Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study Ethical approval is not required.

Informed consent

This article does not contain any studies involving human subjects.

Appendix

Appendix

NaOH/Na2SiO3

Combination of FA + SBA + GGBS

Temperature (°C)

Experimental compressive strength (MPa)

1

90

60

34.1

1

90

60

34.2

1

90

60

33.9

1

90

60

33.8

1

90

60

34.2

1

90

60

34.3

1

85

60

35.3

1

85

60

35.5

1

85

60

34.8

1

85

60

35

1

85

60

35.2

1

85

60

35.7

1

80

60

36.7

1

80

60

36.2

1

80

60

36.9

1

80

60

36.1

1

80

60

36.8

1

80

60

36.6

1

75

60

37.4

1

75

60

37.3

1

75

60

37.5

1

75

60

37.5

1

75

60

37.2

1

75

60

37.3

1

70

60

38.3

1

70

60

38.1

1

70

60

38.5

1

70

60

38.1

1

70

60

38.2

1

70

60

38.6

1

65

60

39.5

1

65

60

39.3

1

65

60

39.7

1

65

60

39.1

1

65

60

39.6

1

65

60

39.8

1

60

60

40.1

1

60

60

39.9

1

60

60

40.3

1

60

60

40

1

60

60

40.4

1

60

60

39.8

1

55

60

41.2

1

55

60

41

1

55

60

41.4

1

55

60

41.3

1

55

60

41.4

1

55

60

40.9

1

50

60

42.1

1

50

60

42.3

1

50

60

41.9

1

50

60

42.2

1

50

60

42.3

1

50

60

41.9

0.67

90

60

35.4

0.67

90

60

35.3

0.67

90

60

35.5

0.67

90

60

35.7

0.67

90

60

35.6

0.67

90

60

35

0.67

85

60

36.3

0.67

85

60

36.2

0.67

85

60

36.4

0.67

85

60

36

0.67

85

60

36.2

0.67

85

60

36.4

0.67

80

60

37.5

0.67

80

60

37.4

0.67

80

60

37.6

0.67

80

60

37.1

0.67

80

60

37.6

0.67

80

60

37.8

0.67

80

60

38.5

0.67

80

60

38.3

0.67

80

60

38.7

0.67

75

60

38.7

0.67

75

60

38.6

0.67

75

60

38.8

0.67

75

60

38.8

0.67

75

60

38.4

0.67

75

60

38.9

0.67

70

60

39.6

0.67

70

60

39.5

0.67

70

60

39.7

0.67

70

60

39.5

0.67

70

60

39.8

0.67

70

60

39.4

0.67

65

60

40.3

0.67

65

60

40.2

0.67

65

60

40.4

0.67

65

60

40

0.67

65

60

40.1

0.67

65

60

40.8

0.67

60

60

41.3

0.67

60

60

41.2

0.67

60

60

41.4

0.67

60

60

41

0.67

60

60

41.1

0.67

60

60

41.8

0.67

55

60

42.5

0.67

55

60

42.4

0.67

55

60

42.6

0.67

55

60

42.1

0.67

55

60

42.7

0.67

55

60

42.7

0.67

50

60

43.4

0.67

50

60

43.6

0.67

50

60

43.2

0.67

50

60

43.3

0.67

50

60

43.7

0.67

50

60

43.1

0.5

90

60

36.4

0.5

90

60

36.5

0.5

90

60

36.3

0.5

90

60

36.5

0.5

90

60

36.7

0.5

90

60

36.1

0.5

85

60

37.2

0.5

85

60

37.1

0.5

85

60

37.3

0.5

85

60

37

0.5

85

60

37.5

0.5

85

60

37.3

0.5

80

60

38.5

0.5

80

60

38.6

0.5

80

60

38.4

0.5

80

60

38.7

0.5

80

60

39

0.5

80

60

38.7

0.5

75

60

39.6

0.5

75

60

39.7

0.5

75

60

39.8

0.5

75

60

40

0.5

75

60

39.6

0.5

75

60

39.7

0.5

70

60

40.3

0.5

70

60

40.2

0.5

70

60

40.4

0.5

70

60

40.9

0.5

70

60

40.4

0.5

70

60

40.8

0.5

65

60

41.4

0.5

65

60

41.3

0.5

65

60

41.5

0.5

65

60

41.7

0.5

65

60

42

0.5

65

60

41.6

0.5

60

60

42.5

0.5

60

60

42.4

0.5

60

60

42.6

0.5

60

60

42.9

0.5

60

60

42.8

0.5

60

60

42.7

0.5

55

60

43.6

0.5

55

60

43.7

0.5

55

60

43.8

0.5

55

60

43.7

0.5

55

60

43.5

0.5

55

60

43.9

0.5

50

60

44.5

0.5

50

60

44.6

0.5

50

60

44.7

0.5

50

60

44.9

0.5

50

60

44.4

0.5

50

60

44.7

1

90

75

37.5

1

90

75

37.6

1

90

75

37.4

1

90

75

37.7

1

90

75

37.8

1

90

75

37

1

85

75

38.7

1

85

75

38.8

1

85

75

38.9

1

85

75

38.5

1

85

75

39

1

85

75

38.4

1

80

75

39.8

1

80

75

39.9

1

80

75

39.7

1

80

75

39.5

1

80

75

39.9

1

80

75

39.8

1

75

75

40.4

1

75

75

40.3

1

75

75

40.5

1

75

75

40.1

1

75

75

40.8

1

75

75

40

1

70

75

41.7

1

70

75

41.6

1

70

75

41.8

1

70

75

41.9

1

70

75

41.5

1

70

75

41.9

1

65

75

42.8

1

65

75

42.9

1

65

75

42.7

1

65

75

42.9

1

65

75

43

1

65

75

42.5

1

60

75

43.6

1

60

75

43.5

1

60

75

43.7

1

60

75

43.4

1

60

75

43.9

1

60

75

43.7

1

55

75

44.7

1

55

75

44.6

1

55

75

44.8

1

55

75

44.9

1

55

75

44.4

1

55

75

44.8

1

50

75

45.5

1

50

75

45.4

1

50

75

45.6

1

50

75

45.2

1

50

75

45.9

1

50

75

45.4

0.67

90

75

38.7

0.67

90

75

38.6

0.67

90

75

38.8

0.67

90

75

38.9

0.67

90

75

38.4

0.67

90

75

38.6

0.67

85

75

39.8

0.67

85

75

39.9

0.67

85

75

39.7

0.67

85

75

39.9

0.67

85

75

39.6

0.67

85

75

40

0.67

80

75

40.5

0.67

80

75

40.6

0.67

80

75

40.7

0.67

80

75

40.2

0.67

80

75

40.9

0.67

80

75

40.3

0.67

75

75

41.7

0.67

75

75

41.8

0.67

75

75

41.6

0.67

75

75

41.5

0.67

75

75

41.3

0.67

75

75

41.9

0.67

70

75

42.7

0.67

70

75

42.8

0.67

70

75

42.9

0.67

70

75

42.7

0.67

70

75

42.9

0.67

70

75

42.8

0.67

65

75

43.6

0.67

65

75

43.5

0.67

65

75

43.7

0.67

65

75

43.9

0.67

65

75

43.3

0.67

65

75

43.4

0.67

60

75

44.5

0.67

60

75

44.6

0.67

60

75

44.7

0.67

60

75

44.9

0.67

60

75

44.5

0.67

60

75

44.7

0.67

55

75

45.6

0.67

55

75

45.7

0.67

55

75

45.8

0.67

55

75

45.5

0.67

55

75

45.7

0.67

55

75

45.9

0.67

50

75

46.8

0.67

50

75

46.9

0.67

50

75

46.7

0.67

50

75

46.8

0.67

50

75

46.9

0.67

50

75

46.7

0.5

90

75

39.9

0.5

90

75

39.8

0.5

90

75

40

0.5

90

75

40.1

0.5

90

75

39.7

0.5

90

75

39.9

0.5

85

75

40.8

0.5

85

75

40.9

0.5

85

75

41

0.5

85

75

40.7

0.5

85

75

40.9

0.5

85

75

41.2

0.5

80

75

41.9

0.5

80

75

42

0.5

80

75

41.8

0.5

80

75

41.7

0.5

80

75

41.5

0.5

80

75

41.9

0.5

75

75

42.9

0.5

75

75

42.8

0.5

75

75

43

0.5

75

75

42.7

0.5

75

75

42.9

0.5

75

75

43.1

0.5

70

75

43.9

0.5

70

75

43.8

0.5

70

75

44

0.5

70

75

43.9

0.5

70

75

45

0.5

70

75

43.8

0.5

65

75

44.9

0.5

65

75

45

0.5

65

75

44.8

0.5

60

75

45.9

0.5

60

75

45.8

0.5

60

75

46

0.5

60

75

46.1

0.5

60

75

45.7

0.5

60

75

45.9

0.5

55

75

46.9

0.5

55

75

46.8

0.5

55

75

47

0.5

55

75

46.9

0.5

55

75

46.7

0.5

55

75

47.1

0.5

50

75

48

0.5

50

75

48.1

0.5

50

75

48.2

0.5

50

75

48

0.5

50

75

47.9

0.5

50

75

48.3

1

90

90

35.1

1

90

90

35.2

1

90

90

35.3

1

90

90

35.6

1

90

90

35.1

1

90

90

35.5

1

85

90

36.3

1

85

90

36.2

1

85

90

36.4

1

85

90

36.1

1

85

90

36.2

1

85

90

36.6

1

80

90

37.4

1

80

90

37.3

1

80

90

37.5

1

80

90

37

1

80

90

37.3

1

80

90

37.6

1

75

90

38.4

1

75

90

38.5

1

75

90

38.3

1

75

90

38.1

1

75

90

38.2

1

75

90

38.9

1

70

90

39.5

1

70

90

39.4

1

70

90

39.3

1

70

90

39.1

1

70

90

39.4

1

70

90

39.7

1

65

90

40.6

1

65

90

40.5

1

65

90

40.7

1

65

90

40.3

1

65

90

40.8

1

65

90

40.7

1

60

90

41.4

1

60

90

41.3

1

60

90

41.5

1

60

90

41.2

1

60

90

41.6

1

60

90

41.7

1

55

90

42.1

1

55

90

42

1

55

90

42.2

1

55

90

41.9

1

55

90

42

1

55

90

42.3

1

50

90

43.4

1

50

90

43.3

1

50

90

43.5

1

50

90

43.1

1

50

90

43.5

1

50

90

43.7

0.67

90

90

36.5

0.67

90

90

36.6

0.67

90

90

36.7

0.67

90

90

36.3

0.67

90

90

36.8

0.67

90

90

36.5

0.67

85

90

37.7

0.67

85

90

37.6

0.67

85

90

37.8

0.67

85

90

37.4

0.67

85

90

37.8

0.67

85

90

37.9

0.67

80

90

38.6

0.67

80

90

38.5

0.67

80

90

38.7

0.67

80

90

38.2

0.67

80

90

38.7

0.67

80

90

38.8

0.67

75

90

39.8

0.67

75

90

39.9

0.67

75

90

38.7

0.67

75

90

39.6

0.67

75

90

39.8

0.67

75

90

40

0.67

70

90

40.4

0.67

70

90

40.3

0.67

70

90

40.5

0.67

70

90

40.2

0.67

70

90

40.3

0.67

70

90

40.4

0.67

65

90

41.2

0.67

65

90

41.1

0.67

65

90

41.3

0.67

65

90

41

0.67

65

90

41.5

0.67

65

90

41.1

0.67

60

90

42.2

0.67

60

90

42.3

0.67

60

90

42.4

0.67

60

90

42

0.67

60

90

42.2

0.67

60

90

42.7

0.67

55

90

43.4

0.67

55

90

43.3

0.67

55

90

43.5

0.67

55

90

43

0.67

55

90

43.6

0.67

55

90

43.5

0.67

50

90

44.3

0.67

50

90

44.2

0.67

50

90

44.4

0.67

50

90

43.9

0.67

50

90

44.2

0.67

50

90

44.5

0.5

90

90

37.3

0.5

90

90

37.2

0.5

90

90

37.4

0.5

90

90

36.9

0.5

90

90

37.2

0.5

90

90

37.5

0.5

85

90

38.3

0.5

85

90

38.4

0.5

85

90

38.5

0.5

85

90

38

0.5

85

90

38.3

0.5

85

90

38.6

0.5

80

90

39.2

0.5

80

90

39.3

0.5

80

90

39.4

0.5

80

90

39

0.5

80

90

39.3

0.5

80

90

39.6

0.5

75

90

40.3

0.5

75

90

40.2

0.5

75

90

40.4

0.5

75

90

40

0.5

75

90

40.2

0.5

75

90

40.4

0.5

70

90

41.5

0.5

70

90

41.5

0.5

70

90

41.6

0.5

70

90

41.7

0.5

70

90

41.8

0.5

70

90

41.1

0.5

65

90

42.2

0.5

65

90

42.3

0.5

65

90

42.4

0.5

65

90

42

0.5

65

90

42.2

0.5

65

90

42.8

0.5

60

90

43.4

0.5

60

90

43.5

0.5

60

90

43.6

0.5

60

90

43.3

0.5

60

90

43.2

0.5

60

90

43.7

0.5

55

90

44.2

0.5

55

90

44.3

0.5

55

90

44.1

0.5

55

90

44

0.5

55

90

44.1

0.5

55

90

44.5

0.5

50

90

45.4

0.5

50

90

45.5

0.5

50

90

45.3

0.5

50

90

45.1

0.5

50

90

45.2

0.5

50

90

45.9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikder, A., Saha, P. & Singha, P.S. Sugar industry waste produced geopolymer concrete and its compressive strength prediction via statistical analysis and artificial intelligence approach. Innov. Infrastruct. Solut. 8, 201 (2023). https://doi.org/10.1007/s41062-023-01168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01168-9

Keywords

Navigation