Skip to main content

Advertisement

Log in

An intensive overview of warm mix asphalt (WMA) technologies towards sustainable pavement construction

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Hot mix asphalt (HMA) is extensively used worldwide for the construction of bituminous pavement. However, the need to make the pavement industry more ecological has led to the evolution of the warm mix asphalt (WMA) concept. Mixing and compaction temperatures for WMA are lower than the conventional HMA production temperatures. The reduced production temperature results in decreased emissions from the burning of fuels, fumes, and odours generated at the plant and the paving site. Multiple WMA technologies affect the performance of bituminous binders and mixtures in different ways. This paper presents an intensive overview of WMA technologies based on numerous laboratory and field studies carried out across the globe. A substantial knowledge has been comprehended about WMA regarding its types (organic additives, chemical additives, and foaming additives) and how they influence bituminous binders and mixtures. Studies available on WMA technologies, mix design procedures, and laboratory and field performance are reviewed and summarized. The effects of WMA mixtures prepared with modified binders such as polymer-modified binder (PMB), crumb rubber-modified binder (CRMB) and reclaimed asphalt pavement materials (RAPM) have also been discussed. The paper infers that WMA technologies provide several technical advancements in bituminous binders and mixtures at suitable production temperatures. Further, it is also suggested that an attempt may be taken to explore various varieties of waste cooking oil as a potential warm mix additive and ascertain its performance on bituminous binders and mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature 534:631–639. https://doi.org/10.1038/nature18307

    Article  Google Scholar 

  2. Schleussner C-F, Rogelj J, Schaeffer M, Lissner T, Licker R, Fischer EM, Knutti R, Levermann A, Frieler K, Hare W (2016) Science and policy characteristics of the Paris Agreement temperature goal. Nat Clim Chang 6:827–835. https://doi.org/10.1038/nclimate3096

    Article  Google Scholar 

  3. Miller TD, Bahia HU (2009) Sustainable asphalt pavements: technologies, knowledge gaps and opportunities. http://uwmarc.wisc.edu/files/MARC-Sustainable-Asphalt-Pavements-white-paper.pdf.

  4. Kandhal PS (2016) Bituminous road construction in India, PHI Learning Pvt. Ltd.

  5. Goh SW (2012) Development and improvement of warm-mix asphalt technology, Michigan Technological University. https://doi.org/10.37099/mtu.dc.etds/239.

  6. Behnood A (2020) A review of the warm mix asphalt (WMA) technologies: effects on thermo-mechanical and rheological properties. J Clean Prod 259:120817. https://doi.org/10.1016/j.jclepro.2020.120817

    Article  Google Scholar 

  7. Caro S, Beltrán DP, Alvarez AE, Estakhri C (2012) Analysis of moisture damage susceptibility of warm mix asphalt (WMA) mixtures based on Dynamic Mechanical Analyzer (DMA) testing and a fracture mechanics model. Constr Build Mater 35:460–467. https://doi.org/10.1016/j.conbuildmat.2012.04.035

    Article  Google Scholar 

  8. Diab A, Sangiorgi C, Ghabchi R, Zaman M, Wahaballa AM (2016) Warm Mix Asphalt (WMA) technologies: benefits and drawbacks—a literature review. Funct Pavement Des Proc. 4th Chinese-European Work. Funct. Pavement Des. CEW 2016, pp 1203–1212. https://doi.org/10.1201/9781315643274-127.

  9. Xu S, Xiao F, Amirkhanian S, Singh D (2017) Moisture characteristics of mixtures with warm mix asphalt technologies—a review. Constr Build Mater 142:148–161. https://doi.org/10.1016/j.conbuildmat.2017.03.069

    Article  Google Scholar 

  10. Capitão SD, Picado-Santos LG, Martinho F (2012) Pavement engineering materials: review on the use of warm-mix asphalt. Constr Build Mater 36:1016–1024. https://doi.org/10.1016/j.conbuildmat.2012.06.038

    Article  Google Scholar 

  11. Ingrassia LP, Lu X, Ferrotti G, Canestrari F (2019) Renewable materials in bituminous binders and mixtures: speculative pretext or reliable opportunity? Resour Conserv Recycl 144:209–222. https://doi.org/10.1016/j.resconrec.2019.01.034

    Article  Google Scholar 

  12. Robinette C, Epps J (2010) Energy, emissions, material conservation, and prices associated with construction, rehabilitation, and material alternatives for flexible pavement. Transp. Res. Rec. J. Transp. Res. Board, No. 2179, Transp. Res. Board Natl. Acad. Washington, D.C., pp 10–22. https://doi.org/10.3141/2179-02.

  13. Zaumanis M (2010), Warm mix asphalt investigation, Technical University of Denmark.

  14. Jamshidi A, Hamzah MO, You Z (2013) Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art. Constr Build Mater 38:530–553. https://doi.org/10.1016/j.conbuildmat.2012.08.015

    Article  Google Scholar 

  15. Moafimadani SR, Rahimov K, Hesami S (2016) The effect of warm additive on the properties and behavior of an asphalt binder. Pet Sci Technol 34:1654–1662. https://doi.org/10.1080/10916466.2016.1217238

    Article  Google Scholar 

  16. Abu Qtaish L, Nazzal MD, Abbas A, Kaya S, Akinbowale S, Arefin MS, Kim SS (2018) Micromechanical and chemical characterization of foamed warm-mix asphalt aging. J Mater Civ Eng 30:04018213 1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0002430.

  17. Oliveira JRM, Silva HMRD, Abreu LPF, Fernandes SRM (2013) Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures. J Clean Prod 41:15–22. https://doi.org/10.1016/j.jclepro.2012.09.047

    Article  Google Scholar 

  18. Wang H, Liu X, Apostolidis P, Scarpas T (2018) Review of warm mix rubberized asphalt concrete: towards a sustainable paving technology. J Clean Prod 177:302–314. https://doi.org/10.1016/j.jclepro.2017.12.245

    Article  Google Scholar 

  19. Bower N, Wen H, Wu S, Willoughby K, Weston J, DeVol J (2016) Evaluation of the performance of warm mix asphalt in Washington state. Int J Pavement Eng 17:423–434. https://doi.org/10.1080/10298436.2014.993199

    Article  Google Scholar 

  20. Yang X, You Z, Perram D, Hand D, Ahmed Z, Wei W, Luo S (2019) Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J Hazard Mater 365:942–951. https://doi.org/10.1016/j.jhazmat.2018.11.080

    Article  Google Scholar 

  21. Kumar R, Saboo N, Kumar P, Chandra S (2017) Effect of warm mix additives on creep and recovery response of conventional and polymer modified asphalt binders. Constr Build Mater 138:352–362. https://doi.org/10.1016/j.conbuildmat.2017.02.019

    Article  Google Scholar 

  22. Martin H, Kerstin Z, Joachim M (2019) Reduced emissions of warm mix asphalt during construction. Road Mater Pavement Des 20:S568–S577. https://doi.org/10.1080/14680629.2019.1628426

    Article  Google Scholar 

  23. Mohd Hasan MR, You Z, Yang X (2017) A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Constr Build Mater 152:115–133. https://doi.org/10.1016/j.conbuildmat.2017.06.135.

  24. Ranieri V, Kowalski KJ, Berloco N, Colonna P, Perrone P (2017) Influence of wax additives on the properties of porous asphalts. Constr Build Mater 145:261–271. https://doi.org/10.1016/j.conbuildmat.2017.03.181

    Article  Google Scholar 

  25. Tatari O, Nazzal M, Kucukvar M (2012) Comparative sustainability assessment of warm-mix asphalts: a thermodynamic based hybrid life cycle analysis. Resour Conserv Recycl 58:18–24. https://doi.org/10.1016/j.resconrec.2011.07.005

    Article  Google Scholar 

  26. Mallick RB, Bergendahl J (2009) A laboratory study on CO2 emission from asphalt binder and its reduction with the use of warm mix asphalt. Int J Sustain Eng 2:275–283. https://doi.org/10.1080/19397030903137287

    Article  Google Scholar 

  27. Wang C, Li Q, Wang KCP, Sun X, Wang X (2017) Emission reduction performance of modified hot mix asphalt mixtures. Adv Mater Sci Eng Hindawi 2017:11. https://doi.org/10.1155/2017/2506381

    Article  Google Scholar 

  28. Hassan M (2010) Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment. Int J Constr Educ Res 6:238–250. https://doi.org/10.1080/15578771.2010.507619

    Article  Google Scholar 

  29. Cheng L, Chen D, Yan G, Zheng H (2010) Life cycle assessment of road surface paving with warm mix asphalt (WMA) replacing Hot Mix Asphalt (HMA), 2010 International Conference on E-Product E-Service E-Entertainment, ICEEE2010. https://doi.org/10.1109/ICEEE.2010.5660713.

  30. Blankendaal T, Schuur P, Voordijk H (2014) Reducing the environmental impact of concrete and asphalt: a scenario approach. J Clean Prod 66:27–36. https://doi.org/10.1016/j.jclepro.2013.10.012

    Article  Google Scholar 

  31. Hassan M (2009) Life-cycle assessment of warm-mix asphalt: an environmental and economic perspective, Lousiana State Univertsiy, Civ. Eng. Cl., pp 1–27. http://www.ltrc.lsu.edu/ltc_09/pdf/Hassan.Marwa.pdf.

  32. Vidal R, Moliner E, Martínez G, Rubio MC (2013) Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour Conserv Recycl 74:101–114. https://doi.org/10.1016/j.resconrec.2013.02.018

    Article  Google Scholar 

  33. Rubio MC, Martínez G, Baena L, Moreno F (2012) Warm mix asphalt: an overview. J Clean Prod 24:76–84. https://doi.org/10.1016/j.jclepro.2011.11.053

    Article  Google Scholar 

  34. Larsen OR, Moen Ø, Robertus C, Koenders BG (2004) WAM foam asphalt production at lower operating temperatures as an environmental friendly alternative to HMA, 3rd Eurasphalt Eurobitume Congr. Vienna., pp 641–650. http://www.shell.com/content/dam/shell/static/bitumen/downloads/wam-field-test-resultseurasphaltcongress.pdf.

  35. Mazumder M, Sriraman V, Kim HH, Lee SJ (2016) Quantifying the environmental burdens of the hot mix asphalt (HMA) pavements and the production of warm mix asphalt (WMA). Int J Pavement Res Technol 9:190–201. https://doi.org/10.1016/j.ijprt.2016.06.001

    Article  Google Scholar 

  36. Davidson JK (2007) Reducing paving emissions thorugh the use of warm mix technology, pp 1–31.

  37. Bueche N (2009) Warm asphalt bituminous mixtures with regards to energy, emissions and performance. Young Res Semin, pp 1–35. https://www.researchgate.net/publication/41054801.

  38. Koenders BG, Stoker DA, Bowen C, De Groot P, Larsen O, Hardy D, Wilms KP (2000) Innovative process in asphalt production and application to obtain lower operating temperatures. In: 2nd Eurasphalt Eurobitume Congr., Transport Research Laboratory, Barcelona, Spain, pp 830–840. http://www.eecongress.org/2000/pdfbook3/session3/Proc0088uk.pdf.

  39. Abdullah ME, Zamhari KA, Buhari R, Bakar SKA, Kamaruddin NHM, Nayan N, Hainin MR, Hassan NA, Hassan SA, Yusoff NIM (2014) Warm mix asphalt technology: a review. J Teknol (Sciences Eng. 71:39–52. https://doi.org/10.11113/jt.v71.3757.

  40. Ali A, Abbas A, Nazzal M, Alhasan A, Roy A, Powers D (2013) Effect of temperature reduction, foaming water content, and aggregate moisture content on performance of foamed warm mix asphalt. Constr Build Mater 48:1058–1066. https://doi.org/10.1016/j.conbuildmat.2013.07.081

    Article  Google Scholar 

  41. Hamzah MO, Jamshidi A, Shahadan Z (2010) Evaluation of the potential of Sasobit® to reduce required heat energy and CO2 emission in the asphalt industry. J Clean Prod 18:1859–1865. https://doi.org/10.1016/j.jclepro.2010.08.002

    Article  Google Scholar 

  42. Rodríguez-Alloza AM, Malik A, Lenzen M, Gallego J (2015) Hybrid input-output life cycle assessment of warm mix asphalt mixtures. J Clean Prod 90:171–182. https://doi.org/10.1016/j.jclepro.2014.11.035

    Article  Google Scholar 

  43. Pérez-Martínez M, Moreno-Navarro F, Martín-Marín J, Ríos-Losada C, Rubio-Gámez MC (2014) Analysis of cleaner technologies based on waxes and surfactant additives in road construction. J Clean Prod 65:374–379. https://doi.org/10.1016/j.jclepro.2013.09.012

    Article  Google Scholar 

  44. Kristjánsdottir Ó, Muench ST, Michael L, Burke G (2007) Assessing potential for Warm-Mix Asphalt Technology adoption. Transp Res Rec J Transp Res Board 2040:91–99. https://doi.org/10.3141/2040-10

    Article  Google Scholar 

  45. Merusi F, Polacco G, Filippi S, Giuliani F (2013) Structural transitions and physical networks in Wax-modified bitumens. Road Mater Pavement Des 14:289–309. https://doi.org/10.1080/14680629.2013.792292

    Article  Google Scholar 

  46. Merusi F, Giuliani F (2011) Rheological characterization of wax-modified asphalt binders at high service temperatures. Mater Struct 44:1809–1820. https://doi.org/10.1617/s11527-011-9739-4

    Article  Google Scholar 

  47. Huang W, He P, Long X, Tian J, Zheng Y, Ma H, Hu S, Wu X (2020) Design of a skeleton-stabilized warm mix asphalt mixture and investigation of its fatigue and fracture performance. Constr Build Mater 248:118618. https://doi.org/10.1016/j.conbuildmat.2020.118618

    Article  Google Scholar 

  48. Mohammad LN, Hassan MM, Vallabhu B, Kabir MS (2015) Louisiana’s experience with WMA technologies: mechanistic, environmental, and economic analysis. J Mater Civ Eng 27:1–13. https://doi.org/10.1061/(asce)mt.1943-5533.0001143

    Article  Google Scholar 

  49. Middleton B, (Bob) Forfylow RW (2009) Evaluation of warm-mix asphalt produced with the Double Barrel Green process. Transp Res Rec J Transp Res Board. 2126:19–26. https://doi.org/10.3141/2126-03.

  50. Estakhri C, Button J, Alvarez AE (2010) Field and laboratory investigation of warm mix asphalt in Texas. http://trid.trb.org/view.aspx?id=987324.

  51. Bonaquist R (2011) Mix Design practices for warm mix asphalt. NCHRP Report 691. Transp. Res. Board Natl. Acad., 111.

  52. Arabani M, Roshani H, Hamedi GH (2012) Estimating moisture sensitivity of warm mix asphalt modified with zycosoil as an antistrip agent using surface free energy method. J Mater Civ Eng 24:889–897. https://doi.org/10.1061/(asce)mt.1943-5533.0000455

    Article  Google Scholar 

  53. Kheradmand B, Muniandy R, Hua LT, Yunus RB, Solouki A (2013) An overview of the emerging warm mix asphalt technology. Int J Pavement Eng 15:79–94. https://doi.org/10.1080/10298436.2013.839791

    Article  Google Scholar 

  54. Jenkins KJ, De Groot JLA, Van De Ven MFC, Molenaar AAA (1999) Half-Warm Foamed Bitumen treatment, a new process, 7th Conf. Asph. Pavements South. Africa, pp 1–17.

  55. Barthel W, Marchand J-P, von Devivere M (2004) Warm asphalt mixes by adding a synthetic zeolite, 3rd Eurasphalt Eurobitume Congr..

  56. Chowdhury A, Button JW (2008) A Review of Warm Mix Asphalt. Report 473700–00080-1, Texas Transp. Institute. 7:75. http://ntl.bts.gov/lib/31000/31200/31288/473700-00080-1.pdf.

  57. Aurilio V, Michael L (2008) Sasobit warm mix asphalt technology: Victoria Street Trial in the City of Ottawa. In: Proc. Fifty-Third Annu. Conf. Can. Tech. Asph. Assoc. (CTAA), Saskatoon Saskatchewan, Canada.

  58. D’Angelo J, Harm E, Bartoszek J, Baumgardner G, Corrigan M, Cowsert J, Harman T, Jamshidi M, Jones W, Newcomb D, Prowell B, Sines R, Yeaton B (2008) Warm-Mix asphalt : European Practice, Alexandria. www.international.fhwa.dot.gov.

  59. Dosh W (2009) Warm-mix asphalt for rural county roads. Cold Reg Eng, pp 438–454.

  60. Al-Rawashdeh AS (2008) Performance assessment of warm mix asphalt (WMA) Pavements. Ohio University. https://doi.org/10.2307/3977547

    Article  Google Scholar 

  61. Behl A, Kumar G, Sharma G, Jain PK (2013) Evaluation of field performance of warm-mix asphalt pavements in India. In: Procedia - Soc. Behav. Sci. 2nd Conf. Transp. Res. Gr. India (2nd CTRG). Elsevier B.V., Amsterdam, pp. 158–167. https://doi.org/10.1016/j.sbspro.2013.11.108.

  62. Sampath A (2010) Comprehensive evaluation of four warm asphalt mixture regarding viscosity, tensile strength, moisture sensitivity, dynamic modulus and flow number, University of Iowa. https://doi.org/10.17077/etd.k37qhxba.

  63. Vaitkus A, Čygas D, Laurinavičius A, Perveneckas Z (2009) Analysis and evaluation of possibilities for the use of warm mix asphalt in Lithuania. Balt J Road Bridg Eng 4:80–86. https://doi.org/10.3846/1822-427X.2009.4.80-86

    Article  Google Scholar 

  64. Goh SW, You Z (2011) Evaluation of Warm Mix Asphalt produced at various temperatures through dynamic modulus testing and four point beam fatigue testing, Pavements Mater Geotech Spec Publ, pp 123–130. https://doi.org/10.1061/47623(402)15.

  65. Prowell BD, Hurley GC, Frank B (2011) Warm-mix asphalt: Best Practices, Natl. Asph. Pavement Assoc, pp 71.

  66. Cucalon LG, Kassem E, Little DN, Masad E (2017) Fundamental evaluation of moisture damage in warm-mix asphalts. Road Mater Pavement Des 18:258–283. https://doi.org/10.1080/14680629.2016.1266765

    Article  Google Scholar 

  67. Yang SH, Rachman F, Susanto HA (2018) Effect of moisture in aggregate on adhesive properties of warm-mix asphalt. Constr Build Mater 190:1295–1307. https://doi.org/10.1016/j.conbuildmat.2018.08.208

    Article  Google Scholar 

  68. Rodríguez-Alloza AM, Gallego J, Pérez I (2013) Study of the effect of four warm mix asphalt additives on bitumen modified with 15% crumb rubber. Constr Build Mater 43:300–308. https://doi.org/10.1016/j.conbuildmat.2013.02.025

    Article  Google Scholar 

  69. Edwards Y, Tasdemir Y, Isacsson U (2006) Rheological effects of commercial waxes and polyphosphoric acid in bitumen 160/220—low temperature performance. Fuel 85:989–997. https://doi.org/10.1016/j.fuel.2005.09.014

    Article  Google Scholar 

  70. Kheradmand B, Muniandy R, Hua LT, Solouki A (2015) A laboratory investigation on the rheological properties of aged and unaged organic wax modified asphalt binders. Pet Sci Technol 33:757–764. https://doi.org/10.1080/10916466.2015.1007383

    Article  Google Scholar 

  71. Fazaeli H, Behbahani H, Amini AA, Rahmani J, Yadollahi G (2012) High and low temperature properties of FT-Paraffin-Modified Bitumen. Adv Mater Sci Eng, pp 1–7. https://doi.org/10.1155/2012/406791.

  72. Ghuzlan KA, Al Assi MO (2017) Sasobit-modified asphalt binder rheology. J Mater Civ Eng 29:04017142 1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0001996.

  73. Ji J, Xu S (2010) Study on the Impact of Sasobit on Asphalt’s properties and micro-structure. Pavements Mater, pp 182–194. https://doi.org/10.1061/41129(385)16.

  74. Lekhaz D, Goutham S, Saravanan K (2018) A review on the performance of additives in warm mix asphalt. Urban. Challenges Emerg. Econ, pp 31–39. https://doi.org/10.1061/9780784482032.004.

  75. Solouki A, Muniandy R, Hassim S, Kheradmand B (2015) Rheological property investigation of various Sasobit-modified bitumen. Pet Sci Technol 33:773–779. https://doi.org/10.1080/10916466.2015.1010040

    Article  Google Scholar 

  76. Xiao F, Punith VS, Amirkhanian SN (2012) Effects of non-foaming WMA additives on asphalt binders at high performance temperatures. Fuel 94:144–155. https://doi.org/10.1016/j.fuel.2011.09.017

    Article  Google Scholar 

  77. Edwards Y, Isacsson U (2005) Wax in bitumen: Part II—Characterization and effects, road mater. Pavement Des 6:439–468. https://doi.org/10.1080/14680629.2005.9690015

    Article  Google Scholar 

  78. Jamaloei MH, Esfahani MA, Torkaman MF (2019) Rheological and mechanical properties of bitumen modified with sasobit, polyethylene, paraffin, and their mixture. J Mater Civ Eng 31(04019119):1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0002664

    Article  Google Scholar 

  79. Yang P, Liu J (2018) Rheological properties of Deurex–modified WMA binder containing SBS. Pet Sci Technol 36:813–819. https://doi.org/10.1080/10916466.2018.1437633

    Article  Google Scholar 

  80. Yu H, Zhu Z, Leng Z, Wu C, Zhang Z, Wang D, Oeser M (2020) Effect of mixing sequence on asphalt mixtures containing waste tire rubber and warm mix surfactants. J Clean Prod 246:119008. https://doi.org/10.1016/j.jclepro.2019.119008

    Article  Google Scholar 

  81. Rondón-Quintana HA, Fernández-Gómez WD, Zafra-Mejía CA (2016) Behavior of a warm mix asphalt using a chemical additive to foam the asphalt binder. Rev. Fac. Ing. Univ. Antioquia., pp 129–138. https://doi.org/10.17533/udea.redin.n78a17.

  82. Zhao S, Huang B, Shu X, Moore J, Bowers B (2016) Effects of WMA technologies on asphalt binder blending. J Mater Civ Eng 28(04015106):1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0001381

    Article  Google Scholar 

  83. Oliveira JRM, Silva HMRD, Abreu LPF, Gonzalez-Leon JA (2012) The role of a surfactant based additive on the production of recycled warm mix asphalts—less is more. Constr Build Mater 35:693–700. https://doi.org/10.1016/j.conbuildmat.2012.04.141

    Article  Google Scholar 

  84. Sol-Sánchez M, Moreno-Navarro F, Rubio-Gámez MC (2017) Study of surfactant additives for the manufacture of warm mix asphalt: from laboratory design to asphalt plant manufacture. Appl Sci, 7. https://doi.org/10.3390/app7070745.

  85. Hamzah MO, Golchin B, Jamshidi A, Chailleux E (2014) Evaluation of Rediset for use in Warm-mix asphalt: a review of the literatures. Int J Pavement Eng 16:809–831. https://doi.org/10.1080/10298436.2014.961020

    Article  Google Scholar 

  86. Awazhar NA, Khairuddin FH, Rahmad S, Fadzil SM, Omar HA, Yusoff NIM, Badri KH (2020) Engineering and leaching properties of asphalt binders modified with polyurethane and Cecabase additives for warm-mix asphalt application. Constr Build Mater 238:117699. https://doi.org/10.1016/j.conbuildmat.2019.117699

    Article  Google Scholar 

  87. Covarrubias PL, Galaviz-González JR, Cueva DÁ, Aguilar SC (2019) Impact of addition of greasy diamide on the rheological-mechanical properties of warm-mix asphalt. Constr Build Mater 211:308–316. https://doi.org/10.1016/j.conbuildmat.2019.03.149

    Article  Google Scholar 

  88. Yin F, Arámbula-Mercado E, Newcomb D (2016) Mix design procedure for foamed asphalt mixtures. Road Mater Pavement Des 17:946–957. https://doi.org/10.1080/14680629.2015.1132633

    Article  Google Scholar 

  89. Kutay ME, Ozturk HI (2012) Investigation of moisture dissipation in foam-based warm mix asphalt using synchrotron-Based X-Ray microtomography. J Mater Civ Eng 24:674–683. https://doi.org/10.1061/(asce)mt.1943-5533.0000433

    Article  Google Scholar 

  90. Van De Ven MFC, Jenkins KJ, Voskuilen JLM, Van Den Beemt R (2007) Development of (half-) warm foamed bitumen mixes: state of the art. Int J Pavement Eng 8:163–175. https://doi.org/10.1080/10298430601149635

    Article  Google Scholar 

  91. Hesami S, Roshani H, Hamedi GH, Azarhoosh A (2013) Evaluate the mechanism of the effect of hydrated lime on moisture damage of warm mix asphalt. Constr Build Mater 47:935–941. https://doi.org/10.1016/j.conbuildmat.2013.05.079

    Article  Google Scholar 

  92. Rahmad S, Yusoff NIM, Rosyidi SAP, Badri KH, Widyatmoko I (2020) Effects of Rediset on the adhesion, stripping, thermal and surface morphologies of PG76 binder. Constr Build Mater 241:117923. https://doi.org/10.1016/j.conbuildmat.2019.117923

    Article  Google Scholar 

  93. Topal A, Sengoz B, Kok BV, Yilmaz M, Aghazadeh Dokandari P, Oner J, Kaya D (2014) Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. Constr Build Mater 57:38–44. https://doi.org/10.1016/j.conbuildmat.2014.01.093.

  94. Woszuk A, Zofka A, Bandura L, Franus W (2017) Effect of zeolite properties on asphalt foaming. Constr Build Mater 139:247–255. https://doi.org/10.1016/j.conbuildmat.2017.02.054

    Article  Google Scholar 

  95. Xiao F, Amirkhanian SN (2010) Effects of liquid antistrip additives on rheology and moisture susceptibility of water bearing warm mixtures. Constr Build Mater 24:1649–1655. https://doi.org/10.1016/j.conbuildmat.2010.02.027

    Article  Google Scholar 

  96. Sufian Z, Aziz NA, Matori MY, Hussain MZ, Hainin MR, Oluwasola EA (2014) Influence of active filler, curing time and moisture content on the strength properties of emulsion and foamed bitumen stabilized Mix. J Teknol Sci Eng. 70:135–141. https://doi.org/10.11113/jt.v70.3502.

  97. Hainin MR, Matori MY, Akin OE (2014) Evaluation of Factors influencing strength of Foamed Bitumen Stabilised Mix. J Teknol Sci Eng 70:111–119. https://doi.org/10.11113/jt.v70.3499.

  98. Khedmati M, Khodaii A, Haghshenas HF (2017) A study on moisture susceptibility of stone matrix warm mix asphalt. Constr Build Mater 144:42–49. https://doi.org/10.1016/j.conbuildmat.2017.03.121

    Article  Google Scholar 

  99. Ghabchi R, Singh D, Zaman M (2015) Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. Road Mater Pavement Des 16:334–357. https://doi.org/10.1080/14680629.2014.1000943

    Article  Google Scholar 

  100. Romier A, Audeon M, David J, Martineau Y, Olard F (2006) Low-energy asphalt with performance of hot-mix asphalt. Transp. Res. Rec. J. Transp. Res. Board., pp 101–112. https://doi.org/10.3141/1962-12.

  101. Roberts FL, Mohammad LN, Wang LB (2002) History of hot mix asphalt mixture design in the United States. J Mater Civ Eng 14:279–293. https://doi.org/10.1061/(asce)0899-1561(2002)14:4(279)

    Article  Google Scholar 

  102. Zumrawi MME, Edrees SAS (2016) Comparison of marshall and superpave asphalt design methods for sudan pavement mixes. Int J Sci Tech Adv 2:29–35

    Google Scholar 

  103. Hurley GC, Prowell BD (2006) Evaluation of potential processes for use in warm mix asphalt, Natl. Cent. Asph. Technol. (NCAT), Rep. No. 06-04. Auburn, Alabama. (2006).

  104. Silva HMRD, Oliveira JRM, Peralta J, Zoorob SE (2010) Optimization of warm mix asphalts using different blends of binders and synthetic paraffin wax contents. Constr Build Mater 24:1621–1631. https://doi.org/10.1016/j.conbuildmat.2010.02.030

    Article  Google Scholar 

  105. West R, Rodezno C, Julian G, Prowell B (2014) Engineering properties and field performance of warm mix asphalt technologies, Project No. NCHRP 09-47A, Transportation Research Board of National Academics. http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP09-47A_FR-VolumeI.pdf.

  106. Tarefder RA, Pan J (2014) Field and Laboratory Evaluation of Warm Mix Asphalt (WMA)—Phase 1, Rep. No. NM13MSC-04, Univ. New Mex. New Mex. Dep. Transp. Albuquerque, p 147. https://doi.org/10.13140/RG.2.1.4514.7367.

  107. Martin AE, Arambula E, Yin F, Cucalon LG, Chowdhury A, Lytton R, Epps J, Estakhri C, Park ES (2014) Evaluation of the moisture susceptibility of WMA Technologies, National Cooperative Highway Research program (NCHRP) Report 763, Transportation Research Board, Washington D.C. https://doi.org/10.17226/22429.

  108. Hajj EY, Alavi MZ, Morian NE, Sebaaly PE (2013) Effect of select warm-mix additives on thermo-viscoelastic properties of asphalt mixtures. Road Mater Pavement Des 14:175–186. https://doi.org/10.1080/14680629.2013.774754

    Article  Google Scholar 

  109. Kanitpong K, Charoentham N, Likitlersuang S (2012) Investigation on the effects of gradation and aggregate type to moisture damage of warm mix asphalt modified with Sasobit. Int J Pavement Eng 13:451–458. https://doi.org/10.1080/10298436.2011.565058

    Article  Google Scholar 

  110. Kim Y-R, Zhang J, Ban H (2012) Moisture damage characterization of warm-mix asphalt mixtures based on laboratory-field evaluation. Constr Build Mater 31:204–211. https://doi.org/10.1016/j.conbuildmat.2011.12.085

    Article  Google Scholar 

  111. Yee TS, Hamzah MO (2019) Asphalt mixture workability and effects of long-term conditioning methods on moisture damage susceptibility and performance of warm mix asphalt. Constr Build Mater 207:316–328. https://doi.org/10.1016/j.conbuildmat.2019.02.128

    Article  Google Scholar 

  112. Punith VS, Xiao F, Amirkhanian SN (2011) Effects of moist aggregates on the performance of Warm Mix Asphalt mixtures containing non-foaming additives. J Test Eval 39. https://doi.org/10.1520/JTE103484.

  113. Khodaii A, Tehrani HK, Haghshenas HF (2012) Hydrated lime effect on moisture susceptibility of warm mix asphalt. Constr Build Mater 36:165–170. https://doi.org/10.1016/j.conbuildmat.2012.04.073

    Article  Google Scholar 

  114. Li X, Chen S, Xiong K, Liu X (2018) Gradation segregation analysis of warm mix asphalt mixture. J Mater Civ Eng 30(04018027):1–7. https://doi.org/10.1061/(asce)mt.1943-5533.0002208

    Article  Google Scholar 

  115. Kumar GS, Suresha SN (2017) Evaluation of properties of nonfoaming warm mix asphalt mixtures at lower working temperatures. J Mater Civ Eng 29(04017229):1–14. https://doi.org/10.1061/(asce)mt.1943-5533.0002071

    Article  Google Scholar 

  116. Mokhtari A, Nejad FM (2013) Comparative study on performance of wax-modified and typical SMA mixtures. J Mater Civ Eng 25:419–427. https://doi.org/10.1061/(asce)mt.1943-5533.0000584

    Article  Google Scholar 

  117. Wurst JE, Putman BJ (2013) Laboratory evaluation of warm-mix open graded friction course mixtures. J Mater Civ Eng 25:403–410. https://doi.org/10.1061/(asce)mt.1943-5533.0000611

    Article  Google Scholar 

  118. Zaumanis M, Olesen E, Haritonovs V, Brencis G, Smirnovs J (2012) Laboratory evaluation of organic and chemical warm mix asphalt technologies for SMA asphalt. Balt J Road Bridg Eng 7:191–197. https://doi.org/10.3846/bjrbe.2012.26

    Article  Google Scholar 

  119. Goh SW, You Z (2012) Mechanical properties of porous asphalt pavement materials with warm mix asphalt and RAP. J Transp Eng 138:90–97. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000307

    Article  Google Scholar 

  120. Punith VS, Xiao F, Amirkhanian SN (2012) Evaluation of moisture sensitivity of stone matrix asphalt mixtures using polymerised warm mix asphalt technologies. Int J Pavement Eng 13:152–165. https://doi.org/10.1080/10298436.2011.643792

    Article  Google Scholar 

  121. Zaumanis M, Haritonovs V, Brencis G, Smirnovs J (2013) Assessing the potential and possibilities for the use of warm mix asphalt in latviaa. Constr Sci 13:1–8. https://doi.org/10.2478/v10311-012-0008-8

    Article  Google Scholar 

  122. Buss A, Williams RC, Schram S (2016) Evaluation of moisture susceptibility tests for warm mix asphalts. Constr Build Mater 102:358–366. https://doi.org/10.1016/j.conbuildmat.2015.11.010

    Article  Google Scholar 

  123. Kristjansdottir O (2006) Warm Mix Asphalt for Cold Weather Paving, University of Washington.

  124. ASTM D2493, standard practice for viscosity-temperature chart for asphalt binders, (2016). www.astm.org.

  125. Button JW, Estakhri C, Wimsatt A (2007) A synthesis of warm-mix asphalt. Report :SWUTC/07/-559-1, Texas Transp. Institute, p 94.

  126. BS EN 12697-10, Bituminous mixtures - Test methods, Part 10: Compactability, BSI Stand. Publ. (2017).

  127. Çelik ON, Atiş CD (2008) Compactibility of hot bituminous mixtures made with crumb rubber-modified binders. Constr Build Mater 22:1143–1147. https://doi.org/10.1016/j.conbuildmat.2007.02.005

    Article  Google Scholar 

  128. Sanchez-Alonso E, Vega-Zamanillo A, Castro-Fresno D, Delrio-Prat M (2011) Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Constr Build Mater 25:2304–2311. https://doi.org/10.1016/j.conbuildmat.2010.11.024

    Article  Google Scholar 

  129. Amelian S, Manian M, Abtahi SM, Goli A (2018) Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag. J Clean Prod 176:329–337. https://doi.org/10.1016/j.jclepro.2017.12.120

    Article  Google Scholar 

  130. Wang C, Hao P, Ruan F, Zhang X, Adhikari S (2013) Determination of the production temperature of warm mix asphalt by workability test. Constr Build Mater 48:1165–1170. https://doi.org/10.1016/j.conbuildmat.2013.07.097

    Article  Google Scholar 

  131. Mo L, Li X, Fang X, Huurman M, Wu S (2012) Laboratory investigation of compaction characteristics and performance of warm mix asphalt containing chemical additives. Constr Build Mater 37:239–247. https://doi.org/10.1016/j.conbuildmat.2012.07.074

    Article  Google Scholar 

  132. Yin F, Cucalon LG, Martin AE, Arambula E, Chowdhury A, Park ES (2013) Laboratory conditioning protocols for Warm-Mix Asphalt, Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., vol 82, pp 177–211.

  133. Xiao F, Punith VS, Putman B, Amirkhanian SN (2011) Utilization of foaming technology in warm-mix-asphalt mixtures containing moist aggregates. J Mater Civ Eng 23:1328–1337. https://doi.org/10.1061/(asce)mt.1943-5533.0000297

    Article  Google Scholar 

  134. Liu J, Saboundjian S, Li P, Connor B, Brunette B (2011) Laboratory evaluation of sasobit-modified warm-mix asphalt for alaskan conditions. J Mater Civ Eng 23:1498–1505. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000226

    Article  Google Scholar 

  135. Hill B (2011) Performance Evaluation of Warm Mix Asphalt Mixtures incorporating Reclaimed Asphalt Pavement. Master of Science in Civil Engineering thesis. https://www.ideals.illinois.edu/handle/2142/24371.

  136. Hill B, Behnia B, Buttlar WG, Reis H (2013) Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement through mechanical performance tests and an acoustic emission approach. J Mater Civ Eng 25:1887–1897. https://doi.org/10.1061/(asce)mt.1943-5533.0000757

    Article  Google Scholar 

  137. Wang Y, Zhu J, Liu L, Sun L (2013) Gradation Evaluation of asphalt rubber mixture with warm-mix additive. Procedia Soc Behav Sci 96:31–38. https://doi.org/10.1016/j.sbspro.2013.08.007

    Article  Google Scholar 

  138. Kim H, Lee S-J, Amirkhanian SN, Jeong K-D (2013) Quantification of oxidative aging of polymer-modified asphalt mixes made with warm mix technologies. J Mater Civ Eng 25:1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0000479

    Article  Google Scholar 

  139. Mogawer W, Austerman A, Mohammad L, Kutay ME (2013) Evaluation of high RAP-WMA asphalt rubber mixtures. Road Mater Pavement Des 14:129–147. https://doi.org/10.1080/14680629.2013.812846

    Article  Google Scholar 

  140. Zelelew H, Paugh C, Corrigan M, Belagutti S, Ramakrishnareddy J (2013) Laboratory evaluation of the mechanical properties of plant- produced warm-mix asphalt mixtures. Road Mater Pavement Des 14:49–70. https://doi.org/10.1080/14680629.2012.735799

    Article  Google Scholar 

  141. Malladi H, Ayyala D, Tayebali AA, Khosla NP (2015) Laboratory evaluation of warm-mix asphalt mixtures for moisture and rutting susceptibility. J Mater Civ Eng 27(04014162):1–6. https://doi.org/10.1061/(asce)mt.1943-5533.0001121

    Article  Google Scholar 

  142. Abdullah ME, Zamhari KA, Hainin MR, Oluwasola EA, Yusoff NIM, Hassan NA (2016) High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders. J Clean Prod 122:326–334. https://doi.org/10.1016/j.jclepro.2016.02.033

    Article  Google Scholar 

  143. Kusam A, Malladi H, Tayebali AA, Khosla NP (2017) Laboratory evaluation of workability and moisture susceptibility of warm-mix asphalt mixtures containing recycled asphalt pavements. J Mater Civ Eng 29(04016276):1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0001825

    Article  Google Scholar 

  144. Almeida A, Sergio M (2019) Evaluation of the Potential of Sasobit REDUX additive to lower warm-mix asphalt production temperature. Materials (Basel) 12:1–11. https://doi.org/10.3390/ma12081285

    Article  Google Scholar 

  145. Bairgi BK, Rahman ASMA, Tarefder RA, Larrain MMM (2020) Comprehensive evaluation of rutting of warm-mix asphalt utilizing long-term pavement performance specific pavement studies. Transp Res Rec 2674:272–283. https://doi.org/10.1177/0361198120921852

    Article  Google Scholar 

  146. You L, You Z, Dai Q, Guo S, Wang J, Schultz M (2018) Characteristics of water-foamed asphalt mixture under multiple freeze-thaw cycles: laboratory evaluation. J Mater Civ Eng 30:04018270. https://doi.org/10.1061/(asce)mt.1943-5533.0002474

    Article  Google Scholar 

  147. Hurley GC, Prowell BD (2005) Evaluation of Aspha-Min® Zeolite for use in warm mix asphalt, NCAT Rep. 05–04, Natl. Cent. Asph. Technol. Auburn Univ. Auburn, Alabama. (2005) 27. http://revistas.javeriana.edu.co/index.php/signoypensamiento/article/viewFile/4635/3593.

  148. Hurley GC, Prowell BD (2005) Evaluation of Sasobit for use in Warm Mix Asphalt, NCAT Rep. 05–06, Natl. Cent. Asph. Technol. Auburn Univ. Auburn, Alabama., Natl. Cent. Asph. Technol..

  149. Hurley GC, Prowell BD (2006) Evaluation of Evotherm for use in Warm Mix Asphalt, NCAT Rep. 06–02, Natl. Cent. Asph. Technol. Auburn Univ. Auburn, Alabama.

  150. Akisetty C (2008) Evaluation of warm mix asphalt additives on performance properties of crm binders and mixtures. PhD. Dissertation.

  151. Gandhi T, Rogers W, Amirkhanian S (2010) Laboratory evaluation of warm mix asphalt ageing characteristics. Int J Pavement Eng 11:133–142. https://doi.org/10.1080/10298430903033339

    Article  Google Scholar 

  152. Singh D, Ashish PK, Chitragar SF (2018) Laboratory performance of recycled asphalt mixes containing wax and chemical based warm mix additives using semi circular bending and tensile strength ratio tests. Constr Build Mater 158:1003–1014. https://doi.org/10.1016/j.conbuildmat.2017.10.080

    Article  Google Scholar 

  153. Xiao F, Punith VS, Amirkhanian SN, Thodesen C (2013) Improved resistance of long-term aged warm-mix asphalt to moisture damage containing moist aggregates. J Mater Civ Eng 25:913–922. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000567

    Article  Google Scholar 

  154. Xiao F, Punith VS, Putman BJ (2013) Effect of compaction temperature on rutting and moisture resistance of foamed warm-mix-asphalt mixtures. J Mater Civ Eng 25:1344–1352. https://doi.org/10.1061/(asce)mt.1943-5533.0000664

    Article  Google Scholar 

  155. Akisetty CK, Lee SJ, Amirkhanian SN (2009) Effects of compaction temperature on volumetric properties of rubberized mixes containing warm-mix additives. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:8(409)

    Article  Google Scholar 

  156. Xiao F, Amirkhanian SN, Zhang R (2012) Influence of short-term aging on rheological characteristics of non-foaming WMA binders. J Perform Constr Facil 26:145–152. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000223

    Article  Google Scholar 

  157. Zhao W, Xiao F, Amirkhanian SN, Putman BJ (2012) Characterization of rutting performance of warm additive modified asphalt mixtures. Constr Build Mater 31:265–272. https://doi.org/10.1016/j.conbuildmat.2011.12.101

    Article  Google Scholar 

  158. Behnood A, Modiri Gharehveran M (2019) Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur Polym J 112:766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049.

  159. Behnood A (2019) Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: a review. J Clean Prod 231:171–182. https://doi.org/10.1016/j.jclepro.2019.05.209

    Article  Google Scholar 

  160. Dong F, Yu X, Wang T, Yin L, Li N, Si J, Li J (2018) Influence of base asphalt aging levels on the foaming characteristics and rheological properties of foamed asphalt. Constr Build Mater 177:43–50. https://doi.org/10.1016/j.conbuildmat.2018.05.100

    Article  Google Scholar 

  161. Gao J, Yan K, He W, Yang S, You L (2018) High temperature performance of asphalt modified with Sasobit and Deurex. Constr Build Mater 164:783–791. https://doi.org/10.1016/j.conbuildmat.2017.12.164

    Article  Google Scholar 

  162. Hasan MRM, Goh SW, You Z (2013) Comparative study on the properties of WMA mixture using foamed admixture and free water system. Constr Build Mater 48:45–50. https://doi.org/10.1016/j.conbuildmat.2013.06.028

    Article  Google Scholar 

  163. Shiva Kumar G, Suresha SN (2019) State of the art review on mix design and mechanical properties of warm mix asphalt. Road Mater Pavement Des 20:1501–1524. https://doi.org/10.1080/14680629.2018.1473284.

  164. Norouzi A, Kim YR (2017) Mechanistic evaluation of fatigue cracking in asphalt pavements. Int J Pavement Eng 18:530–546. https://doi.org/10.1080/10298436.2015.1095909

    Article  Google Scholar 

  165. Omrani H, Tanakizadeh A, Ghanizadeh AR, Fakhri M (2017) Investigating different approaches for evaluation of fatigue performance of warm mix asphalt mixtures. Mater Struct 50:1–16. https://doi.org/10.1617/s11527-017-1018-6

    Article  Google Scholar 

  166. Norouzi N, Ameli A, Babagoli R (2021) Investigation of fatigue behaviour of warm modified binders and warm-stone matrix asphalt (WSMA) mixtures through binder and mixture tests. Int J Pavement Eng 22:1042–1051. https://doi.org/10.1080/10298436.2019.1659262

    Article  Google Scholar 

  167. Vishal U, Chowdary V, Padmarekha A, Krishnan JM (2020) Influence of moisture damage on fatigue of warm mix and hot mix asphalt mixture. J Mater Civ Eng 32:04020247. https://doi.org/10.1061/(asce)mt.1943-5533.0003321

    Article  Google Scholar 

  168. Fakhri M, Ghanizadeh AR, Omrani H (2013) Comparison of Fatigue Resistance of HMA and WMA Mixtures Modified by SBS. In: Procedia - Soc. Behav. Sci. 2nd Conf. Transp. Res. Gr. India (2nd CTRG). Elsevier B.V., Amsredam, pp 168–177. https://doi.org/10.1016/j.sbspro.2013.11.109.

  169. Ahmed TA, Hajj EY, Sebaaly PE, Majerus N (2013) Influence of aggregate source and warm-mix technologies on the mechanical properties of asphalt mixtures. Adv Civ Eng Mater 2:400–417. https://doi.org/10.1520/acem20130072

    Article  Google Scholar 

  170. Xiao F, Zhao PEW, Amirkhanian SN (2009) Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives. Constr Build Mater 23:3144–3151. https://doi.org/10.1016/j.conbuildmat.2009.06.036

    Article  Google Scholar 

  171. Haggag MM, Mogawer WS, Bonaquist R (2011) Fatigue evaluation of Warm-Mix Asphalt mixtures: use of uniaxial, cyclic, direct tension compression test. Transp. Res. Rec. J. Transp. Res. Board., pp 26–32. https://doi.org/10.3141/2208-04.

  172. Hasan Z, Hamid B, Amir I, Danial N (2013) Long term performance of warm mix asphalt versus hot mix asphalt. J Cent South Univ 20:256–266. https://doi.org/10.1007/s11771-013-1483-1

    Article  Google Scholar 

  173. Toraldo E, Brovelli C, Mariani E (2013) Laboratory investigation into the effects of working temperatures on wax-based warm mix asphalt. Constr Build Mater 44:774–780. https://doi.org/10.1016/j.conbuildmat.2013.03.085

    Article  Google Scholar 

  174. DeDene CD, Goh SW, Hasan MRM, You Z (2015) Laboratory performance based cost assessment of warm-mix asphalt concrete technologies. Int J Pavement Res Technol 8:38–46. https://doi.org/10.6135/ijprt.org.tw/2015.8(1).38

    Article  Google Scholar 

  175. Sadeq M, Al-Khalid H, Masad E, Sirin O (2016) Comparative evaluation of fatigue resistance of warm fine aggregate asphalt mixtures. Constr Build Mater 109:8–16. https://doi.org/10.1016/j.conbuildmat.2016.01.045

    Article  Google Scholar 

  176. Sol-Sánchez M, Fiume A, Moreno-Navarro F, Rubio-Gámez MC (2018) Analysis of fatigue cracking of warm mix asphalt. Influence of the manufacturing technology. Int J Fatigue 110:197–203. https://doi.org/10.1016/j.ijfatigue.2018.01.029.

  177. Sadek H, Sadeq M, Masad E, Al-Khalid H, Sirin O (2019) Probabilistic viscoelastic continuum damage analysis of fatigue life of warm-mix asphalt. J Transp Eng Part B Pavements 145:04019024. https://doi.org/10.1061/jpeodx.0000128

    Article  Google Scholar 

  178. Asmael NM, Fattah MY, Kadhim AJ (2020) Exploring the effect of warm additives on fatigue cracking of asphalt mixtures. J Appl Sci Eng 23:197–205. https://doi.org/10.6180/jase.202006_23(2).0003

    Article  Google Scholar 

  179. Diefenderfer S, Hearon A (2008) Laboratory evaluation of a warm asphalt technology for use in Virginia. Final Report VTRC 09-R11.

  180. Su K, Maekawa R, Hachiya Y (2009) Laboratory evaluation of WMA mixture for use in airport pavement rehabilitation. Constr Build Mater 23:2709–2714. https://doi.org/10.1016/j.conbuildmat.2008.12.011

    Article  Google Scholar 

  181. Zhao S, Huang B, Shu X, Woods M (2013) Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Constr Build Mater 44:92–100. https://doi.org/10.1016/j.conbuildmat.2013.03.010

    Article  Google Scholar 

  182. Goh SW, Hasan MRM, You Z (2013) Performances evaluation of Cecabase® RT in Warm Mix Asphalt technology. Procedia Soc Behav Sci 96:2782–2790. https://doi.org/10.1016/j.sbspro.2013.08.311

    Article  Google Scholar 

  183. Martinho FCG, Picado-Santos LG, Capitão SD (2017) Mechanical properties of warm-mix asphalt concrete containing different additives and recycled asphalt as constituents applied in real production conditions. Constr Build Mater 131:78–89. https://doi.org/10.1016/j.conbuildmat.2016.11.051

    Article  Google Scholar 

  184. Hajj EY, Cortez EM (2011) Evaluation of the CECABASE RT Warm Mix Additive. Final Report.

  185. Xiao F, Zhao W, Amirkhanian SN (2010) Aging influence on fatigue characteristics of RAC mixtures containing warm asphalt additives. Adv. Civ. Eng., pp 1–10. https://doi.org/10.1155/2010/329084.

  186. Ghabchi R (2014) Laboratory characterization of recycled and warm mix asphalt for enhanced pavement applications. PhD Dissertation.

  187. Obaid HA (2020) Characteristics of warm mixed asphalt modified by waste polymer and nano-silica. Int J Pavement Res Technol 14:397–401. https://doi.org/10.1007/s42947-020-0061-9

    Article  Google Scholar 

  188. Punith VS, Xiao F, Amirkhanian SN (2012) Effects of lime content on moisture susceptibility of rubberized stone matrix asphalt mixtures using warm mix additives in terms of statistical analysis. J Mater Civ Eng 24:1431–1440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000525

    Article  Google Scholar 

  189. Yu H, Leng Z, Dong Z, Tan Z, Guo F, Yan J (2018) Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr Build Mater 175:392–401. https://doi.org/10.1016/j.conbuildmat.2018.04.218

    Article  Google Scholar 

  190. Sukhija M, Saboo N (2021) A comprehensive review of warm mix asphalt mixtures-laboratory to field. Constr Build Mater 274:121781. https://doi.org/10.1016/j.conbuildmat.2020.121781

    Article  Google Scholar 

  191. Kim H, Lee S-J, Amirkhanian SN (2012) Influence of warm mix additives on PMA mixture properties. J Transp Eng 138:991–997. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000406

    Article  Google Scholar 

  192. ASTM D4867, Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures, (2014).

  193. Liu J, Yan K, Liu J (2018) Rheological properties of warm mix asphalt binders and warm mix asphalt binders containing polyphosphoric acid. Int J Pavement Res Technol 11:481–487. https://doi.org/10.1016/j.ijprt.2018.03.005

    Article  Google Scholar 

  194. Yang B, Xu H, Zhou P, Tan Y (2020) Investigation of aggregate moisture content variation and its impact on pavement performance of WMA. Constr Build Mater 255:119350. https://doi.org/10.1016/j.conbuildmat.2020.119350

    Article  Google Scholar 

  195. Ji J, Yao H, Yuan Z, Suo Z, Xu Y, Li P, You Z (2019) Moisture Susceptibility of Warm Mix Asphalt (WMA) with an Organic Wax Additive Based on X-ray Computed Tomography (CT) Technology. Adv. Civ. Eng., pp 1–12. https://doi.org/10.1155/2019/7101982.

  196. Bindu CS, Joseph MS, Sibinesh PS, George S, Sivan S (2020) Performance evaluation of warm mix asphalt using natural rubber modified bitumen and cashew nut shell liquid. Int J Pavement Res Technol 13:442–453. https://doi.org/10.1007/s42947-020-0241-7

    Article  Google Scholar 

  197. Hamzah MO, Aman MY, Shahadan Z (2011) Resistance to disintegration of warm porous asphalt incorporating Sasobit®. Aust J Basic Appl Sci 5:113–121

    Google Scholar 

  198. Cheng J, Shen J, Xiao F (2011) Moisture susceptibility of warm-mix asphalt mixtures containing nanosized hydrated lime. J Mater Civ Eng 23:1552–1559. https://doi.org/10.1061/(asce)mt.1943-5533.0000308

    Article  Google Scholar 

  199. Hurley GC, Prowell BD, Reinke G, Joskowicz P, Davis R, Scherocman J, Brown S, Hongbin X, Bonte D (2006) Evaluation of potential processes for use in warm mix asphalt. In: Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess..

  200. Al-Qadi IL, Wang H, Baek J, Leng Z, Doyen M, Gillen S (2012) Effects of curing time and reheating on performance of warm stone-matrix asphalt. J Mater Civ Eng 24:1422–1428. https://doi.org/10.1061/(asce)mt.1943-5533.0000513

    Article  Google Scholar 

  201. Chamoun Z, Souliman MI, Hajj EY, Sebaaly P (2015) Evaluation of select warm mix additives with polymer and rubber modified asphalt mixtures. Can J Civ Eng. https://doi.org/10.1139/cjce-2013-0512

    Article  Google Scholar 

  202. Akisetty C, Xiao F, Gandhi T, Amirkhanian S (2011) Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive. Constr Build Mater 25:950–956. https://doi.org/10.1016/j.conbuildmat.2010.06.087

    Article  Google Scholar 

  203. Akisetty C, Lee S-J, Rogers W, Amirkhanian SN (2010) Evaluation of engineering properties of rubberized laboratory mixes containing warm mix additives. J Test Eval 38:65–72

    Google Scholar 

  204. Wang S, Cheng D, Xiao F (2017) Recent developments in the application of chemical approaches to rubberized asphalt. Constr Build Mater 131:101–113. https://doi.org/10.1016/j.conbuildmat.2016.11.077

    Article  Google Scholar 

  205. Gandhi T (2008) Effects of warm asphalt additives on asphalt binder and mixture properties. https://tigerprints.clemson.edu/all_dissertations.

  206. Sangsefidi E, Ziari H, Mansourkhaki A (2014) The effect of aggregate gradation on creep and moisture susceptibility performance of warm mix asphalt. Int J Pavement Eng 15:133–141. https://doi.org/10.1080/10298436.2012.752824

    Article  Google Scholar 

  207. Hossain Z, Zaman M, O’Rear EA, Chen D-H (2012) Effectiveness of water-bearing and anti-stripping additives in warm mix asphalt technology. Int J Pavement Eng 13:424–432. https://doi.org/10.1080/10298436.2011.616588

    Article  Google Scholar 

  208. Sengoz B, Topal A, Gorkem C (2013) Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Constr Build Mater 43:242–252. https://doi.org/10.1016/j.conbuildmat.2013.02.026

    Article  Google Scholar 

  209. Xie Z, Fan W, Wang L, Shen J (2013) The effectiveness of warm mix asphalt (WMA) additives affected by the type of aggregate and binder. Int J Pavement Res Technol 6:554–561. https://doi.org/10.6135/ijprt.org.tw/2013.6(5).554

    Article  Google Scholar 

  210. Nejad FM, Azarhoosh A, Hamedi GH, Roshani H (2014) Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Mater Pavement Des 15:207–219. https://doi.org/10.1080/14680629.2013.868820

    Article  Google Scholar 

  211. Mohd Hasan MR, You Z, Porter D, Goh SW (2015) Laboratory moisture susceptibility evaluation of WMA under possible field conditions. Constr Build Mater 101:57–64. https://doi.org/10.1016/j.conbuildmat.2015.10.004.

  212. Nakhaei M, Olia ADD, Nasrekani AA, Asadi P (2016) Rutting and moisture resistance evaluation of polyethylene wax–modified asphalt mixtures. Pet Sci Technol 34:1568–1573. https://doi.org/10.1080/10916466.2016.1212209

    Article  Google Scholar 

  213. Martinho FCG, Picado-Santos LG, Capitão SD (2020) Assessment of warm-mix asphalt concrete containing sub-products as part of aggregate blend. Int J Pavement Eng 21:1213–1222. https://doi.org/10.1080/10298436.2018.1533135

    Article  Google Scholar 

  214. Zhu J, Zhang K, Liu K, Shi X (2019) Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide. Constr Build Mater 217:273–282. https://doi.org/10.1016/j.conbuildmat.2019.05.054

    Article  Google Scholar 

  215. MeadWestvaco, Evotherm warm mix asphalt in crow wing county, Minnesota: Eliminating thermal cracking at reduced cost, MWV Asph. Innov. North Charlest. (2009).

  216. Sheth NM (2010). Evaluation of Selected Warm Mix Asphalt Additives. https://doi.org/10.1080/14680629.2015.1030825

    Article  Google Scholar 

  217. Jones D, Tsai B-W, Signore J (2010) Warm-Mix Asphalt study: laboratory test results for AkzoNobel Rediset WMX. Contract Report: UCPRC-CR-2010-01.

  218. Sengoz B, Oylumluoglu J (2013) Utilization of recycled asphalt concrete with different warm mix asphalt additives prepared with different penetration grades bitumen. Constr Build Mater 45:173–183. https://doi.org/10.1016/j.conbuildmat.2013.03.097

    Article  Google Scholar 

  219. Leng Z, Gamez A, Al-Qadi IL (2014) Mechanical property characterization of warm-mix asphalt prepared with chemical additives. J Mater Civ Eng 26:304–311. https://doi.org/10.1061/(asce)mt.1943-5533.0000810

    Article  Google Scholar 

  220. Mirzababaei P (2016) Effect of zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations. Constr Build Mater 116:403–412. https://doi.org/10.1016/j.conbuildmat.2016.04.143

    Article  Google Scholar 

  221. Hasan MRM, Hamzah MO, Yee TS (2017) Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm. AIP Conf. Proc., p 9. https://doi.org/10.1063/1.5005731.

  222. Sanij HK, Meybodi PA, Hormozaky MA, Hosseini SH, Olazar M (2019) Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. Constr Build Mater 197:185–194. https://doi.org/10.1016/j.conbuildmat.2018.11.190

    Article  Google Scholar 

  223. Goh SW, You Z, Damage M, Cracking F, of Foamed Warm Mix Asphalt Using a Simple Laboratory Setup, T DI Congr. (2011) Integr. Transp. Dev. a Better Tomorrow—Proc. 1st Congr. Transp Dev Inst ASCE, pp 762–771. https://doi.org/10.1061/41167(398)73

  224. Kavussi A, Hashemian L (2012) Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes. Int J Pavement Eng 13:415–423. https://doi.org/10.1080/10298436.2011.597859

    Article  Google Scholar 

  225. Shu X, Huang B, Shrum ED, Jia X (2012) Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Constr Build Mater 35:125–130. https://doi.org/10.1016/j.conbuildmat.2012.02.095

    Article  Google Scholar 

  226. Şengöz B, Topal A, Gorkem C (2013) Evaluation of moisture characteristics of warm mix asphalt involving natural zeolite. Road Mater Pavement Des 14:933–945. https://doi.org/10.1080/14680629.2013.817352

    Article  Google Scholar 

  227. Sebaaly PE, Hajj EY, Piratheepan M (2015) Evaluation of selected warm mix asphalt technologies. Road Mater Pavement Des 16:475–486. https://doi.org/10.1080/14680629.2015.1030825

    Article  Google Scholar 

  228. Woszuk A, Franus W (2016) Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr Build Mater 114:556–563. https://doi.org/10.1016/j.conbuildmat.2016.03.188

    Article  Google Scholar 

  229. Wu S, Li X (2017) Evaluation of effect of curing time on mixture performance of Advera warm mix asphalt. Constr Build Mater 145:62–67. https://doi.org/10.1016/j.conbuildmat.2017.03.240

    Article  Google Scholar 

  230. Sanchez-Alonso E, Vega-Zamanillo A, Calzada-Perez MA, Castro-Fresno D (2018) Mechanical behavior of asphalt mixtures containing silica gels as warm additives. Mater Struct 51:1–11. https://doi.org/10.1617/s11527-018-1214-z

    Article  Google Scholar 

  231. El-Hakim RTA, Epps J, Martin AE, Arámbula-Mercado E (2019) Laboratory and field investigation of moisture susceptibility of hot and warm mix asphalts. Int J Pavement Eng, pp 1–10. https://doi.org/10.1080/10298436.2019.1694150.

  232. Zhang K, Luo Y, Chen F, Han F (2020) Performance evaluation of new warm mix asphalt and water stability of its mixture based on laboratory tests. Constr Build Mater 241:118017. https://doi.org/10.1016/j.conbuildmat.2020.118017

    Article  Google Scholar 

  233. Bairgi BK, Tarefder RA, Ahmed MU (2018) Long-term rutting and stripping characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation. Constr Build Mater 170:790–800. https://doi.org/10.1016/j.conbuildmat.2018.03.055

    Article  Google Scholar 

  234. Bennert T, Maher A, Sauber R (2011) Influence of production temperature and aggregate moisture content on the initial performance of warm-mix asphalt. Transp. Res. Rec. J. Transp. Res. Board., pp 97–107. https://doi.org/10.3141/2208-13.

  235. Frigio F, Raschia S, Steiner D, Hofko B, Canestrari F (2016) Aging effects on recycled WMA porous asphalt mixtures. Constr Build Mater 123:712–718. https://doi.org/10.1016/j.conbuildmat.2016.07.063

    Article  Google Scholar 

  236. Mazumder M, Kim H, Lee S-J (2016) Performance properties of polymer modified asphalt binders containing wax additives. Int J Pavement Res Technol 9:128–139. https://doi.org/10.1016/j.ijprt.2016.03.004

    Article  Google Scholar 

  237. Oner J, Sengoz B, Rija SF, Topal A (2017) Investigation of the rheological properties of elastomeric polymer-modified bitumen using warm-mix asphalt additives. Road Mater Pavement Des 18:1049–1066. https://doi.org/10.1080/14680629.2016.1206484

    Article  Google Scholar 

  238. Ziari H, Naghavi M, Imaninasab R (2018) Performance evaluation of rubberised asphalt mixes containing WMA additives. Int J Pavement Eng 19:623–629. https://doi.org/10.1080/10298436.2016.1199874

    Article  Google Scholar 

  239. Syed I, Hasan MA, Tarefder RA (2018) Investigation of Rutting Performance of Different Warm Mix Asphalt (WMA) Mixtures. Int J Geomate 14:116–123. https://doi.org/10.21660/2018.45.7328.

  240. Topal A, Oner J, Sengoz B, Dokandari PA, Kaya D (2017) Evaluation of rutting performance of warm mix asphalt. Int J Civ Eng 15:705–714. https://doi.org/10.1007/s40999-017-0188-5

    Article  Google Scholar 

  241. Kim Y, Hwang S, Kwon S, Jeong K, Yang S, Kim Y (2011) Laboratory and field experiences of low energy and low carbon-dioxide Asphalt Pavement in Korea, Geotech. Spec. Publ. No. 212, Pavement Mater. Am. Soc. Civ. Eng. Reston, VA, pp 131–138. https://doi.org/10.1061/47623(402)16.

  242. Arega Z, Bhasin A (2012) Binder Rheology and performance in warm mix asphalt. Final Report No. FHWA/TX-12/0–6591-1.

  243. Sanchez-Alonso E, Vega-Zamanillo A, Calzada-Perez MA, Castro-Fresno D (2013) Effect of warm additives on rutting and fatigue behaviour of asphalt mixtures. Constr Build Mater 47:240–244. https://doi.org/10.1016/j.conbuildmat.2013.05.083

    Article  Google Scholar 

  244. Raghavendra A, Medeiros MS, Hassan MM, Mohammad LN, “Bill” King W (2016) Laboratory and construction evaluation of Warm-Mix Asphalt. J Mate Civ Eng 28: 04016023 1-9. https://doi.org/10.1061/(asce)mt.1943-5533.0001506.

  245. Syed IA, Mannan UA, Tarefder RA (2019) Comparison of rut performance of asphalt concrete and binder containing warm mix additives. Int J Pavement Res Technol 12:162–169. https://doi.org/10.1007/s42947-019-0021-4

    Article  Google Scholar 

  246. Xiao F, Amirkhanian SN, Putman BJ (2010) Evaluation of rutting resistance in warm-mix asphalts containing moist aggregate. Transp. Res. Rec. J. Transp. Res. Board., pp 75–84. https://doi.org/10.3141/2180-09.

  247. Vargas-Nordcbeck A, Timm DH (2012) Rutting characterization of warm mix asphalt and high RAP mixtures. Road Mater Pavement Des 13:1–20. https://doi.org/10.1080/14680629.2012.657042

    Article  Google Scholar 

  248. Ayyala D (2014) An investigation of warm mix asphalt technology in asphalt concrete mixtures.

  249. Ge D, Yan K, You L, Wang Z (2017) Modification mechanism of asphalt modified with Sasobit and Polyphosphoric acid (PPA). Constr Build Mater 143:419–428. https://doi.org/10.1016/j.conbuildmat.2017.03.043

    Article  Google Scholar 

  250. Liu K, Zhu J, Zhang K, Wu J, Yin J, Shi X (2019) Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder. Constr Build Mater 217:301–309. https://doi.org/10.1016/j.conbuildmat.2019.05.073

    Article  Google Scholar 

  251. Ozturk HI, Kamran F (2019) Laboratory evaluation of dry process crumb rubber modified mixtures containing Warm Mix Asphalt Additives. Constr Build Mater 229:116940. https://doi.org/10.1016/j.conbuildmat.2019.116940

    Article  Google Scholar 

  252. Saberi F, Fakhri KM, Azami A (2017) Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. J Clean Prod 165:1125–1132. https://doi.org/10.1016/j.jclepro.2017.07.079.

  253. Sobhi S, Yousefi A, Behnood A (2020) The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures. Constr Build Mater 238:117676. https://doi.org/10.1016/j.conbuildmat.2019.117676

    Article  Google Scholar 

  254. Behnood A, Olek J (2017) Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr Build Mater 151:464–478. https://doi.org/10.1016/j.conbuildmat.2017.06.115

    Article  Google Scholar 

  255. Behnood A, Olek J (2017) Stress-dependent behavior and rutting resistance of modified asphalt binders: an MSCR approach. Constr Build Mater 157:635–646. https://doi.org/10.1016/j.conbuildmat.2017.09.138

    Article  Google Scholar 

  256. Wang T, Yang R, Li A, Chen L, Zhou B (2016) Effects of Sasobit and its adding process on the performance of rubber asphalt. Chem Eng Trans 51:181–186. https://doi.org/10.3303/CET1651031

    Article  Google Scholar 

  257. Rodríguez-Alloza AM, Gallego J (2017) Mechanical performance of asphalt rubber mixtures with warm mix asphalt additives. Mater Struct 50:1–9. https://doi.org/10.1617/s11527-017-1020-z

    Article  Google Scholar 

  258. Ma T, Wang H, Zhao Y, Huang X, Wang S (2016) Laboratory Investigation of Crumb Rubber Modified Asphalt Binder and Mixtures with Warm-Mix Additives. Int J Civ Eng, pp 185–194. https://doi.org/10.1007/s40999-016-0040-3.

  259. Baek J, Lee SY, Lee HJ (2018) Comparative evaluation of WMA additives effects on conventional and polymer modified asphalt pavements. KSCE J Civ Eng 22:2099–2108. https://doi.org/10.1007/s12205-018-1785-9

    Article  Google Scholar 

  260. Akisetty CK, Lee S-J, Amirkhanian SN (2009) High temperature properties of rubberized binders containing warm asphalt additives. Constr Build Mater 23:565–573. https://doi.org/10.1016/j.conbuildmat.2007.10.010

    Article  Google Scholar 

  261. Leng Z, Yu H, Zhang Z, Tan Z (2017) Optimizing the mixing procedure of warm asphalt rubber with wax-based additives through mechanism investigation and performance characterization. Constr Build Mater 144:291–299. https://doi.org/10.1016/j.conbuildmat.2017.03.208

    Article  Google Scholar 

  262. Akisetty CK, Lee SJ, Amirkhanian SN (2010) Laboratory investigation of the influence of warm asphalt additives on long-term performance properties of CRM binders. Int J Pavement Eng 11:153–160. https://doi.org/10.1080/10298430903197225

    Article  Google Scholar 

  263. Yu X, Wang Y, Luo Y (2013) Effects of types and content of warm-mix additives on CRMA. J Mater Civ Eng 25:939–945. https://doi.org/10.1061/(asce)mt.1943-5533.0000765

    Article  Google Scholar 

  264. Yu H, Leng Z, Xiao F, Gao Z (2016) Rheological and chemical characteristics of rubberized binders with non-foaming warm mix additives. Constr Build Mater 111:671–678. https://doi.org/10.1016/j.conbuildmat.2016.02.066

    Article  Google Scholar 

  265. Rodríguez-Alloza AM, Gallego J, Pérez I, Bonati A, Giuliani F (2014) High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives. Constr Build Mater 53:460–466. https://doi.org/10.1016/j.conbuildmat.2013.12.026

    Article  Google Scholar 

  266. Rodríguez-Alloza AM, Gallego J, Giuliani F (2017) Complex shear modulus and phase angle of crumb rubber modified binders containing organic warm mix asphalt additives. Mater Struct 50:1–9. https://doi.org/10.1617/s11527-016-0950-1

    Article  Google Scholar 

  267. Yu X, Leng Z, Wang Y, Lin S (2014) Characterization of the effect of foaming water content on the performance of foamed crumb rubber modified asphalt. Constr Build Mater 67:279–284. https://doi.org/10.1016/j.conbuildmat.2014.03.046

    Article  Google Scholar 

  268. Padula FRG, Nicodemos S, Mendes JC, Willis R, Taylor A (2019) Evaluation of fatigue performance of high RAP-WMA mixtures. Chin Soc Pavement Eng Int J Pavement Res Technol. https://doi.org/10.1007/s42947-019-0051-y.

  269. Singh D, Chitragar SF, Ashish PK (2017) Comparison of moisture and fracture damage resistance of hot and warm asphalt mixes containing reclaimed pavement materials. Constr Build Mater 157:1145–1153. https://doi.org/10.1016/j.conbuildmat.2017.09.176

    Article  Google Scholar 

  270. Guo M, Liu H, Jiao Y, Mo L, Tan Y, Wang D, Liang M (2020) Effect of WMA-RAP technology on pavement performance of asphalt mixture: a state-of-the-art review. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.121704

    Article  Google Scholar 

  271. Abed A, Thom N, Lo Presti D (2018) Design considerations of high RAP-content asphalt produced at reduced temperatures. Mater Struct 51:1–16. https://doi.org/10.1617/s11527-018-1220-1.

  272. Oner J, Sengoz B (2015) Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0116180

    Article  Google Scholar 

  273. Guo N, You Z, Zhao Y, Tan Y, Diab A (2014) Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Constr Build Mater 64:141–149. https://doi.org/10.1016/j.conbuildmat.2014.04.002

    Article  Google Scholar 

  274. Behbahani H, Ayazi MJ, Moniri A (2017) Laboratory investigation of rutting performance of warm mix asphalt containing high content of reclaimed asphalt pavement. Pet Sci Technol 35:1556–1561. https://doi.org/10.1080/10916466.2017.1316738

    Article  Google Scholar 

  275. Guo N, You Z, Tan Y, Zhao Y (2017) Performance evaluation of warm mix asphalt containing reclaimed asphalt mixtures. Int J Pavement Eng 18:981–989. https://doi.org/10.1080/10298436.2016.1138114

    Article  Google Scholar 

  276. Lopes M, Gabet T, Bernucci L, Mouillet V (2015) Durability of hot and warm asphalt mixtures containing high rates of reclaimed asphalt at laboratory scale. Mater Struct 48:3937–3948. https://doi.org/10.1617/s11527-014-0454-9

    Article  Google Scholar 

  277. Zhao S, Huang B, Shu X, Jia X, Woods M (2012) Laboratory performance evaluation of warm-mix asphalt containing high percentages of reclaimed asphalt pavement. Transp. Res. Rec. J. Transp. Res. Board., pp 98–105. https://doi.org/10.3141/2294-11.

  278. Monu K, Ransinchung GD, Singh S (2019) Effect of long-term ageing on properties of RAP inclusive WMA mixes. Constr Build Mater 206:483–493. https://doi.org/10.1016/j.conbuildmat.2019.02.087

    Article  Google Scholar 

  279. Dong F, Yu X, Xu B, Wang T (2017) Comparison of high temperature performance and microstructure for foamed WMA and HMA with RAP binder. Constr Build Mater 134:594–601. https://doi.org/10.1016/j.conbuildmat.2016.12.106

    Article  Google Scholar 

  280. Mogawer WS, Austerman AJ, Kluttz R, Roussel M (2012) High-performance thin-lift overlays with high reclaimed asphalt pavement content and warm-mix asphalt technology. Transp. Res. Rec J Transp Res Board 2293:18–28. https://doi.org/10.3141/2293-03

    Article  Google Scholar 

  281. Valdes-Vidal G, Calabi-Floody A, Sanchez-Alonso E (2018) Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement construction. Constr Build Mater 174:576–585. https://doi.org/10.1016/j.conbuildmat.2018.04.149

    Article  Google Scholar 

  282. Dinis-Almeida M, Afonso ML (2015) Warm mix recycled asphalt—a sustainable solution. J Clean Prod 107:310–316. https://doi.org/10.1016/j.jclepro.2015.04.065

    Article  Google Scholar 

  283. Dinis-Almeida M, Castro-Gomes J, Sangiorgi C, Zoorob SE, Afonso ML (2016) Performance of Warm Mix Recycled Asphalt containing up to 100% RAP. Constr Build Mater 112:1–6. https://doi.org/10.1016/j.conbuildmat.2016.02.108

    Article  Google Scholar 

  284. Goli H, Latifi M (2020) Evaluation of the effect of moisture on behavior of warm mix asphalt (WMA) mixtures containing recycled asphalt pavement (RAP). Constr Build Mater 247:118526. https://doi.org/10.1016/j.conbuildmat.2020.118526

    Article  Google Scholar 

  285. Song W, Huang B, Shu X (2018) Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement. J Clean Prod 192:191–198. https://doi.org/10.1016/j.jclepro.2018.04.269

    Article  Google Scholar 

  286. Doyle JD, Howard IL (2013) Rutting and moisture damage resistance of high reclaimed asphalt pavement warm mixed asphalt: loaded wheel tracking vs. conventional methods. Road Mater Pavement Des 14:148–172. https://doi.org/10.1080/14680629.2013.812841.

  287. Yu X, Dong F, Xu B, Ding G, Ding P (2017) RAP binder influences on the rheological characteristics of foamed warm-mix recycled asphalt. J Mater Civ Eng 29:1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001993

    Article  Google Scholar 

  288. Mallick RB, Kandhal PS, Bradbury RL (2008) Using warm-mix asphalt technology to incorporate high percentage of reclaimed asphalt pavement material in asphalt mixtures. Transp Res Rec J Transp Res Board 2051:71–79. https://doi.org/10.3141/2051-09

    Article  Google Scholar 

  289. Xiao F, Hou X, Amirkhanian S, Kim KW (2016) Superpave evaluation of higher RAP contents using WMA technologies. Constr Build Mater 112:1080–1087. https://doi.org/10.1016/j.conbuildmat.2016.03.024

    Article  Google Scholar 

  290. Safaei F, Lee J, do Nascimento LAH, Hintz C, Kim YR (2014) Implications of warm-mix asphalt on long-term oxidative ageing and fatigue performance of asphalt binders and mixtures. Road Mater. Pavement Des 15:45–61. https://doi.org/10.1080/14680629.2014.927050.

  291. Arshad AK, Kridan FAM, Rahman MYA (2013) The Effects of Sasobit ® Modifier on binder at high and intermediate temperatures. Int J Eng Adv Technol 2.

  292. Naidoo K, Lewis T (2008) Innovative warm mix asphalt trials completed near Durban.

  293. Saboundjian S, Liu J, Li P, Brunette B (2011) Late-season paving of a low-volume road with warm-mix asphalt. Transp Res Rec, pp 40–47. https://doi.org/10.3141/2205-06.

  294. Diefenderfer SD, McGhee KK, Donaldson BM (2007) Installation of Warm Mix Asphalt Projects in Virginia. Final Report VTRC 07-R25. http://www.virginiadot.org/vtrc/main/online_reports/pdf/07-r25.pdf.

  295. Tao Z, Huang W, Du Q, Yan J (2009) Warm mix asphalt technology applied at low air temperature in China. Road Mater Pavement Des 10:337–347. https://doi.org/10.1080/14680629.2009.9690250

    Article  Google Scholar 

  296. Motta R, Bernucci L, Souza D, Brosseaud Y, Leal JF (2012) Field performance and laboratory evaluation of warm mix asphalt produced with rubberized bitumen, 5th Eurasphalt Eurobitume Congr. https://hal.archives-ouvertes.fr/hal-00851053.

  297. Davidson JK (2007) Warm Asphalt Mix Technology—The Canadian Perspective, AAPA Pavements, Sydney, New South Wales.

  298. Garcia A, Austin CJ, Jelfs J (2016) Mechanical properties of asphalt mixture containing sunflower oil capsules. J Clean Prod 118:124–132. https://doi.org/10.1016/j.jclepro.2016.01.072

    Article  Google Scholar 

  299. García Á, Schlangen E, Van De Ven M (2011) Properties of capsules containing rejuvenators for their use in asphalt concrete. Fuel 90:583–591. https://doi.org/10.1016/j.fuel.2010.09.033

    Article  Google Scholar 

  300. Portugal ACX, de Lucena LC, de Lucena AE, Costa DB, de Lima KA (2017) Rheological properties of asphalt binders prepared with maize oil, Constr Build Mater 152: 1015–1026. https://doi.org/10.1016/j.conbuildmat.2017.07.077.

  301. Shen J, Amirkhanian S, Miller JA (2007) Effects of rejuvenating agents on superpave mixtures containing reclaimed asphalt pavement. J Mater Civ Eng 19:376–384. https://doi.org/10.1061/(ASCE)0899-1561(2007)19

    Article  Google Scholar 

  302. Zhang R, Wang H, You Z, Jiang X, Yang X (2017) Optimization of bio-asphalt using bio-oil and distilled water. J Clean Prod 165:281–289. https://doi.org/10.1016/j.jclepro.2017.07.154

    Article  Google Scholar 

  303. Wen H, Bhusal S, Wen B (2013) Laboratory evaluation of waste cooking oil-based bioasphalt as an alternative binder for hot mix asphalt. J Mater Civ Eng 25:1432–1437. https://doi.org/10.1061/(asce)mt.1943-5533.0000713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Prakash.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, G., Suman, S.K. An intensive overview of warm mix asphalt (WMA) technologies towards sustainable pavement construction. Innov. Infrastruct. Solut. 7, 110 (2022). https://doi.org/10.1007/s41062-021-00712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00712-9

Keywords

Navigation