Skip to main content

Advertisement

Log in

Ultrasonic rock microcracking characterization and classification using Hilbert–Huang transform

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This study aims to set up a non-destructive method to control the quality of aggregates using ultrasonic wave acquisition and processing. Two applications are presented proving the applicability of the proposed methodology. The first is the characterization and classification of four limestone rocks from cement quarries in the northern part of Tunisia selected from different geological ages (Lower Jurassic, Upper Cretaceous, and Lower Eocene). The second application deals with assessing rock crushing-induced microcracking evolution in quarried rock from the first initial source rock mass to the final aggregate. Five stages were considered: before the blast (bench front), after the blast round (muck pile), after the primary crusher, after the secondary crusher, and after the tertiary crusher. A physico-chemical and ultrasonic characterization was performed on aggregates and core samples in order to identify their characteristics namely the crack porosity and P-wave velocity. A cluster statistical analysis was then adopted to classify the investigated samples into several groups where crack porosity is the most relevant factor in classifying their quality. In addition to measuring ultrasonic parameters such as the spatial attenuation and P-wave velocity, the ultrasonic study looks at the spectrum of the received signal (non-stationary and nonlinear signal) by measuring the instantaneous energy density with the Hilbert–Huang transform. Beyond the fact that the high negative correlation between the P-wave velocity and the instantaneous energy was identified, the methodology developed allowed to prove that the latter is a relevant factor for the classification of limestone rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Armaghani D, Mohamad ET, Momeni E, Monjezi M, Narayanasamy MS (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(1):1–16

    Article  Google Scholar 

  2. Battista BM, Knapp CC, Goebel VM (2007) Application of the empirical mode decomposition and Hilbert–Huang transform to seismic reflection data. Geophysics 72(2):H29–H37

    Article  Google Scholar 

  3. Yu C, Ji S, Li Q (2016) Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks. J Rock Mech Geotechn Eng 8(1):35–49

    Article  Google Scholar 

  4. Chen X, Xu Z (2017) The ultrasonic P-wave velocity-stress relationship of rocks and its application. Bull Eng Geol Environ 76:661–669

    Article  Google Scholar 

  5. Ercikdi B, Karaman K, Cihangir F, Yılmaz T, Aliyazıcıoğlu Ş, Kesimal A (2016) Core size effect on the dry and saturated ultrasonic pulse velocity of limestone samples. Ultrasonics 72:143–149

    Article  Google Scholar 

  6. Galena E, Carretero MI, Mayoral E (1999) A methodology for locating the original quarries used for constructing historical buildings: application to Malaga Cathedral, Spain. Eng Geol 54:287–298

    Article  Google Scholar 

  7. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Article  Google Scholar 

  8. Goueygou M, Lafhaj Z, Soltani F (2009) Assessment of porosity of mortar using ultrasonic Rayleigh waves. NDT E Int 42(5):353–360

    Article  Google Scholar 

  9. Hewlett PC, Sims I, Brown B (2003) Lea’s chemistry of cement and concrete, 4th edn. Elsevier, pp 907–1015

  10. Hamdi E, Audigier M, Du Mouza J, Fjader K (2003) Blast induced micro cracks assessment in muck pile blocks: P-wave velocity and porosity measurements. In: European Federation of Explosive Engineers. Proceedings of the 2nd world conference on explosives and blasting technique, Prague Czech Republic, pp 389–399

  11. Hamdi E Bouden, Romdhane N, Mouza J (2008) Fragmentation energy in rock blasting. Geotech Geol Eng 26:133–146

    Article  Google Scholar 

  12. Hamdi E Bouden, Romdhane N (2011) A tensile damage model for rocks: application to blast-induced damage assessment. Comput Geotech 38:133–141

    Article  Google Scholar 

  13. Hamdi E, Lafhaj Z (2013) Microcracking based rock classification using ultrasonic and porosity parameters and multivariate analysis methods. Eng Geol 167(2013):27–36

    Article  Google Scholar 

  14. Huang NE, Shen Z, Long SR, Wu MC, Shih H-H, Zheng Q, Yen N-C, Tung C-C, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 115:903–995

    Article  Google Scholar 

  15. Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: The Hilbert spectrum. Annu Rev Fluid Mech 31:417–457

    Article  Google Scholar 

  16. Kahraman S (2007) The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46:341–348

    Article  Google Scholar 

  17. Karaman K, Kaya A, Kesimal A (2015) Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones. J Afr Earth Sci 112(2015):142–149

    Article  Google Scholar 

  18. Kurtuluş C, Sertçelik F, Sertçelik I (2016) Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geod et Geophys 51:571–582

    Article  Google Scholar 

  19. Lafhaj Z, Goueygou M, Djerbi A, Kaczmarek M (2006) Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem Concr Res 36(4):625–633

    Article  Google Scholar 

  20. Lafhaj Z, Richard G, Kaczmarek M, Skoczylas F (2007) Experimental determination of intrinsic permeability of limestone and concrete: comparison between in situ and laboratory results. Build Environ 42(8):3042–3050

    Article  Google Scholar 

  21. Lin S, Yang JN, Zhou L (2005) Damage identification of a benchmark building for structural health monitoring. Smart Mater Struct 14:162–169

    Article  Google Scholar 

  22. Martinez-Martinez J, Benavente D, Garcia Del Cura MA (2011) Spatial attenuation: the most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng Geol 119:84–95

    Article  Google Scholar 

  23. Martinez-Martinez J, Benavente D Garcia, Del Cura MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull Eng Geol Environ 71:263–268

    Article  Google Scholar 

  24. Martinez-Martinez J, Benavent D, Garcia Del Cura MA (2006) Application of ultrasonics to brecciated dolostones for assessing their mechanical properties. Geol Soc Lond IAEG, p 243

  25. Martinez-Martinez J, Benavent D, Garcia Del Cura MA (2007) Petrographic quantification of brecciated rocks by image analysis. Application to the interpretation of elastic wave velocities. Eng Geol 90:41–54

    Article  Google Scholar 

  26. NF P 94-410-3: Roches - Essais pour déterminer les propriétés physiques des roches - Partie 3 : détermination de la porosité. AFNOR, 3 May 2001

  27. Paultre P (2011) Structures en béton armé: Analyse et dimensionnement. Presses internationales Polytechnique

  28. P 18-554: Granulats - Mesures des masses volumiques, de la porosité, du coefficient d’absorption et de la teneur en eau des gravillons et cailloux. AFNOR, décembre 1990

  29. Reyschle T, Darot M, Gueguen Y (1989) Mechanical and transport properties of crustal rocks: from single cracks to crack statistics. Phys Earth Planet Inter 55:353–360

    Article  Google Scholar 

  30. Snoussi G, Hamdi E, Lafhaj Z (2013) Multivariate analysis methods based methodology for rock microcracking characterization. Geotech Geol Eng 32(4):973–986

    Article  Google Scholar 

  31. Tang J-P, Chiou D-J, Chen C-W, Chiang W-L, Hsu W-K, Chen C-Y, Liu T-Y (2009) A case study of damagedetection in benchmark buildings using a Hilbert-Huang transform-based method. J Vib Control 1–14

  32. Tourenq C, Fourmaintraux D, Denis A (1971) Propagation des ondes et discontinuités des roches. Symp. Int. Society of Rock Mechanics, Nancy, France

  33. Ündül Ö (2016) Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Eng Geol 2016(210):10–22

    Article  Google Scholar 

  34. Vasconcelos G, Lourenco OB, Alves CAS, Vasconcelos J (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48:453–466

    Article  Google Scholar 

  35. Wu K, Chen B, Yao W, Zhang D (2001) Effect of coarse aggregate type on mechanical properties of high-performance concrete. Cem Concr Res 31(10):1421–1425

    Article  Google Scholar 

  36. Wen L, Luo Z, Yang S, Qin Y, Wang W (2019) Velocity on dolomitic limestone using a statistical method. Geotech Geol Eng 37(2):1079–1094

    Article  Google Scholar 

  37. Yagiz S (2001) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 34(4):947–953

    Article  Google Scholar 

Download references

Funding

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufien Ezzeiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzeiri, S., Hamdi, E. Ultrasonic rock microcracking characterization and classification using Hilbert–Huang transform. Innov. Infrastruct. Solut. 5, 100 (2020). https://doi.org/10.1007/s41062-020-00347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00347-2

Keywords

Navigation