Skip to main content
Log in

Structural performance of laminated composite thin-walled beams under four-point bending

  • Technical papers
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This study focuses on evaluating flexural behavior of carbon fiber-reinforced polymer laminated composite thin-walled I-beams. In order to verify the effectiveness, a total of seven specimens were analyzed in this study with constant flange width 100 mm and web height 200 mm. The I-beam implemented plywood as the core of the web and flanges with 10 mm thickness in flanges and 5 mm thickness in web with total length of 1350 mm and support span with 1200 mm. The beams were analyzed under four-point bending, and the flexural behavior of these beams has been evaluated analytically based on theoretical fundamentals. Additionally, a finite element model has been developed using ANSYS software program to validate the results, and it has been seen a very good agreement between results. Two influential parameters were considered including: (i) the effect of changing the stacking sequence and ply orientation, (ii) the effect of changing the shear span-to-depth ratio. Results indicated that in cases where decreasing number of flange laminates, the bending stiffness of composite beams was notably reduced. However, this negative effect could be avoided by increasing the number of flange laminates with 0°, and reducing the shear span-to-depth ratios of the beams led to the change of the damage mechanisms from delamination to compression buckling of top flange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aktas A (2001) Determination of the deflection function of a composite cantilever beam using the theory of anisotropic elasticity. Math Comput Appl 6(1):67–74

    Google Scholar 

  2. Brown BJ (1998) Design analysis of single-span advanced composite deck-an stringer bridge systems. West Virginia University, West Virginia

    Book  Google Scholar 

  3. Cardoso JB, Castro JA, Sousa LG, Valido AJ (2002) Optimal design of laminated composite beam structures. Struct Multidiscip Optim 24:205–211

    Article  Google Scholar 

  4. Craddock JN, Yen SC (1993) The bending stiffness of laminated composite material I beams. Compos Eng 3(11):1025–1038

    Article  Google Scholar 

  5. Drummond JA, Chan WS (1999) Fabrication, analysis, and experimentation of a practically constructed laminated composite I-beam under pure bending. J Thermoplast Compos Mater 12:177–187

    Article  Google Scholar 

  6. Gopal VS (2007) Static analysis of cross-ply laminated composite plate using finite element method, M.Sc thesis, National Institute of Technology (in Rourkela)

  7. Hayes Michael D, Lesko John J (2007) Measurement of the Timoshenko shear stiffness. Part I: effect of warping. J Compos Construct ASCE 11(3):336–342

    Article  Google Scholar 

  8. Lee J (2011) Center of gravity and shear center of thin walled open section composite beams. Compos Struct 52:255–260

    Article  Google Scholar 

  9. Mottram JT (1992) Lateral-torsional buckling of a pultruded I-beam. J Compos 23(2):81–92

    Article  Google Scholar 

  10. Parambil JC (2010) Stress analysis of laminated composite beams with I section, M.Sc thesis, Texas University

  11. Rios G, Chan WS (2010) A unified analysis of stiffener reinforced composite beams. In: Proceedings of the American society for composites 25th technical conference

  12. Schmalberger B (2010) Optimization of an orthotropic composite beam, M.Sc thesis, Faculty of Rensselaer Polytechnic Institute, Hartford

  13. Zhou A (2002) Stiffness and strength of fiber reinforced polymer composite bridge deck system, Ph.D. thesis, Virginia Polytechnic Institute, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Yosri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yosri, A.M., Ghanem, G.M., Salama, M.A.E. et al. Structural performance of laminated composite thin-walled beams under four-point bending. Innov. Infrastruct. Solut. 4, 58 (2019). https://doi.org/10.1007/s41062-019-0232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-019-0232-1

Keywords

Navigation