Skip to main content

Advertisement

Log in

Semiconductors as Effective Electrodes for Dye Sensitized Solar Cell Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

As proficient photovoltaic devices, dye-sensitized solar cells (DSSCs) have received considerable consideration in recent years. In order to accomplish advanced solar-to-electricity efficiency and increase long-term functioning stability, improvements in the configuration structure of DSSCs are essential, as is an understanding of their elementary principles. This work discusses the application of different semiconductor constituents designed for effective DSSCs. The main parameters crucial to fabrication of DSSC electrodes in nano-porous semiconductor structures are high surface area and large pore size. Different inorganic semiconductor materials are used to load sensitizer dyes, which absorb a lot of light and induce high photocurrent for efficient DSSCs. The first section of the review covers energy sources, photovoltaics, and the benefits of solar cells in daily life, while the second part includes the various types of semiconductors applied in DSSC applications. The final section provides a brief review of future perspectives for DSSCs and a survey of semiconductor materials proposed for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2020 Our World Data

Fig. 2
Fig. 3

Copyright 2014 American Chemical Society

Fig. 4

Copyright 2015 Wiley

Fig. 5

Copyright 2020 Royal Society of Chemistry

Fig. 6

Copyright 2014 Royal Society of Chemistry

Fig. 7
Fig. 8

Copyright 2012 Royal Society of Chemistry

Similar content being viewed by others

Abbreviations

PV:

Photovoltaic

PC:

Polycrystalline

DSSCs:

Dye sensitized solar cells

OSCs:

Organic solar cells

QDSCs:

Quantum dots cells

HSCs:

Hybrid solar cells

TFPVs:

Thin film PV cells

SCs:

Semiconductors

VB:

Valence band

CB:

Conduction band

N3 dye:

Cis-Bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II)

N719 dye:

Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II)

Z907 dye:

(cis-Ru(H2dcbpy)(dnbpy)(NCS)2

(I/I 3):

Iodide and triiodide

V oc :

Open-circuit voltage

J sc :

Short-circuit current

FF:

Fill factor

PCE:

Power conversion efficiency

IPCE:

Incident Photon-to-electron Conversion Efficiency

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

EDS:

Energy dispersive x-ray spectroscopy

AFM:

Atomic force microscopy

UV:

Ultraviolet

Vis:

Visible

FTO:

Fluorine doped tin oxide

ITO:

Indium tin oxide

References

  1. Xiao Z, Duan T, Chen H, Sun K, Lu S (2018) Sol Energy Mater Sol Cells 182:1–13

    Article  CAS  Google Scholar 

  2. Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Nanoscale Adv 1:2654–2662

    Article  CAS  Google Scholar 

  3. El-Shazly AN, Shalan AE, Rashad MM, Abdel-Aal EA, Ibrahim IA, Elshahat MF (2018) RSC Adv 8:24059–24067

    Article  CAS  Google Scholar 

  4. Yin Y, Mizokami S, Aikawa K (2015) Appl Energy 159:449–457

    Article  Google Scholar 

  5. Bashouti MY, Pietsch M, Brönstrup G, Sivakov V, Ristein J, Christiansen S (2014) Prog Photovolt: Res Appl 22:1050–1061

    Article  CAS  Google Scholar 

  6. Lewis NS (2016) Science 351:6271

    Article  Google Scholar 

  7. Shalan AE, Sharmoukh W, Elshazly AN, Elnagar MM, Al Kiey SA, Rashad MM, Allam NK (2020) Sust Mater Technol 26:e00226

    Google Scholar 

  8. Urpelainen J, Van de Graaf T (2015) Int Environ Agreements 15:159–177

    Article  Google Scholar 

  9. Shin H, Ellinger AE, Nolan HH, DeCoster TD, Lane F (2018) J Bus Ethics 151:1121–1138

  10. Kulmas M, Paterson L, Höflich K, Bashouti MY, Wu Y, Göbelt M, Ristein J, Bachmann J, Meyer B, Christiansen S (2016) Adv Funct Mater 26:4882–4889

    Article  CAS  Google Scholar 

  11. Aghaei TP (2014) Global Energy Network Institute (GENI) https://www.solarthermalworld.org/sites/default/files/story/2015-06-26/solar-energy-and-technologies-2015-03-11.pdf

  12. Husain AAF, Hasan WZW, Shafie S, Hamidon MN, Pandey SS (2018) Renew Sustain Energy Rev 94:779–791

    Article  CAS  Google Scholar 

  13. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Renew Sustain Energy Rev 20:443–461

    Article  CAS  Google Scholar 

  14. Parida B, Iniyan S, Goic R (2011) Renew Sustain Energy Rev 15:1625–1636

    Article  CAS  Google Scholar 

  15. Green MA, Emery K, Hishikawa Y, Warta W (2011) Sol Cell Effic Tables (Version 37) 19:84–92

    CAS  Google Scholar 

  16. NREL (1976–2021) Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

  17. Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits TN, Bett AW (2014) Prog Photovoltaics Res Appl 22:277–282

    Article  CAS  Google Scholar 

  18. Rehman S, Bader MA, Al-Moallem SA (2007) Renew Sustain Energy Rev 11:1843–1857

    Article  Google Scholar 

  19. American Chemical Society (2021) How a solar cell works. https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/how-a-solar-cell-works.html.

  20. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) Sol Energy Mater Sol Cells 92:418–424

    Article  CAS  Google Scholar 

  21. Elseman AM, Zaki AH, Shalan AE, Rashad MM, Song Q (2020) Ind Eng Chem Res 59(41):18549–18557

    Article  CAS  Google Scholar 

  22. Mirzaei M, Zamani M (2017) Energy Sustain Dev 38:93–101

    Article  Google Scholar 

  23. Shalan AE (2020) Mater Adv 1:292

    Article  Google Scholar 

  24. Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324–1338

    Article  PubMed  Google Scholar 

  25. Conibeer G, Green M, Corkish R, Cho Y, Cho EC, Jiang CW et al (2006) Thin Solid Films 511–512:654–662

    Article  Google Scholar 

  26. Conibeer G (2007) Mater Today 10:42–50

    Article  CAS  Google Scholar 

  27. Zweibel K (2000) Sol Energy Mater Sol Cells 63:375–386

    Article  CAS  Google Scholar 

  28. Hamza A, Ali H, Abdelrasheed H, Zeid S, Alfadhli HMG (2017) Sustain Energy Technol Assess 22:25–33

    Google Scholar 

  29. Shalan AE, Rashad MM, Yu Y, Lira-Cantu M, Abdel-Mottaleb MSA (2013) Electrochim Acta 89:469–478

    Article  CAS  Google Scholar 

  30. O’regan B, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  31. Im SH, Lee YH, Seok SI, Kim SW, Kim SW (2010) Langmuir 26:18576–18580

    Article  CAS  PubMed  Google Scholar 

  32. Binas V, Venieri D, Kotzias D, Kiriakidis G (2017) J Materiomics 3:3–16

    Article  Google Scholar 

  33. Islam SZ, Nagpure S, Kim DY, Rankin SE (2017) Inorganics 5:15

    Article  Google Scholar 

  34. Shinde DR, Tambade PS, Chaskar MG, Gadave KM (2017) Drink Water Eng Sci 10:109

    Article  CAS  Google Scholar 

  35. Elsayed EM, Shalan AE, Rashad MM (2014) J Mater Sci Mater Electron 25:3412–3419

    Article  CAS  Google Scholar 

  36. Xiao Z, Duan T, Chen H, Sun K, Shirong Lu (2018) Sol Energy Mater Sol Cells 182:1–13

    Article  CAS  Google Scholar 

  37. Jiang C, Moniz SJ, Wang A, Zhang T, Tang J (2017) Chem Soc Rev 46:4645–4660

    Article  CAS  PubMed  Google Scholar 

  38. Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) Adv Mater 28:1917–1933

    Article  CAS  PubMed  Google Scholar 

  39. Shalan AE, Akman E, Sadegh F, Akin S (2021) J Phys Chem Lett 12(3):997–1004

    Article  CAS  PubMed  Google Scholar 

  40. Shalan AE, Mohammed MKA, Govindan N (2021) RSC Adv 11(8):4417–4424

    Article  CAS  Google Scholar 

  41. Shalan AE, Elseman AM, Rasly M, Moharam MM, Lira-Cantu M, Rashad MM (2015) RSC Adv 5:103095–103104

    Article  CAS  Google Scholar 

  42. Sanad MMS, Shalan AE, Rashad MM, Mahmoud MHH (2015) Appl Surf Sci 359:315–322

    Article  CAS  Google Scholar 

  43. Al-Attafi K, Nattestad A, Yamauchi Y, Dou SX, Kim JH (2017) Sci Rep 7:10341

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Mater Today 18:155–162

    Article  CAS  Google Scholar 

  45. Ma C, Wang L, Guo Z, Lv Y, Chen W, Ming H, Wang J (2018) Colloids Surf A 538:94–99

    Article  CAS  Google Scholar 

  46. Liu X, Fang J, Liu Y, Lin T (2016) Front Mater Sci 10:225–237

    Article  Google Scholar 

  47. Yum JH, Baranoff E, Wenger S, Nazeeruddin MK, Grätzel M (2011) Energy Environ Sci 4:842–857

    Article  CAS  Google Scholar 

  48. Shalan AE, Rashad MM (2013) Appl Surf Sci 283:975–981

    Article  CAS  Google Scholar 

  49. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Chem Rev 115:2136–2173

    Article  CAS  PubMed  Google Scholar 

  50. Ito S, Zakeeruddin SM, Comte P, Liska P, Kuang D, Grätzel M (2008) Nat Photonics 2:693–698

    Article  CAS  Google Scholar 

  51. Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P et al (2008) Nat Mater 7:626–630

    Article  CAS  PubMed  Google Scholar 

  52. Wang P, Dai Q, Zakeeruddin SM, Forsyth M, MacFarlane DR, Grätzel M (2004) J Am Chem Soc 126:13590–13591

    Article  CAS  PubMed  Google Scholar 

  53. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) Nat Mater 2:402–407

    Article  CAS  PubMed  Google Scholar 

  54. Boschloo G, Hagfeldt A (2009) Acc Chem Res 42:1819–1826

    Article  CAS  PubMed  Google Scholar 

  55. Zeng K, Tong Z, Ma L, Zhu WH, Wu W, Xie Y (2020) Energy Environ Sci 13:1617–1657

    Article  Google Scholar 

  56. Krishnapriya R, Praneetha S, Murugan AV (2015) Cryst Eng Comm 17:8353–8367

    Article  CAS  Google Scholar 

  57. Joseph S, Boby SJM, Nathan DMGT, Sagayaraj P (2017) Sol Energy Mater Sol Cells 165:72–81

    Article  CAS  Google Scholar 

  58. Sun G, Sun L, Xie H, Liu J (2016) Nanomaterials 6:129

    Article  PubMed Central  Google Scholar 

  59. Rani AA, Ernest S (2016) Appl Phys A 122:1–9

    Google Scholar 

  60. Kim DH, Losego MD, Peng Q, Parsons GN (2016) Adv Mater Interfaces 3(21):1600354

    Article  Google Scholar 

  61. Zhai BG, Yang L, Huang YM (2017) J Nanomater 1821837:1–8

    Article  Google Scholar 

  62. Cai H, Li J, Xu X, Tang H, Luo J, Binnemans K et al (2017) J Alloy Compd 697:132–137

    Article  CAS  Google Scholar 

  63. Luo QP, Wang B, Cao Y (2017) J Alloy Compd 695:3324–3330

    Article  CAS  Google Scholar 

  64. Kilic B, Turkdogan S, Astam A, Ozer OC, Asgin M, Cebeci H, Mucur SP (2016) Sci Rep 6:srep27052

    Article  Google Scholar 

  65. Wu WQ, Feng HL, Chen HY, Kuang DB, Su CY (2017) J of Mater Chem A 5:12699–12717

    Article  CAS  Google Scholar 

  66. Wang S, Zhang X, Zhou G, Wang ZS (2012) Phys Chem Chem Phys 14:816–822

    Article  CAS  PubMed  Google Scholar 

  67. Shaikh JS, Shaikh NS, Mali SS, Patil JV, Pawar KK, Kanjanaboos P, Patil PS (2018) Nanoscale 10:4987–5034

    Article  CAS  PubMed  Google Scholar 

  68. Sharma K, Sharma V, Sharma SS (2018) Nanoscale Res Lett 13:381

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xuhui S, Xinglan C, Wanquan T, Dong W, Kefei L (2014) AIP Adv 4:031304

    Article  Google Scholar 

  70. Tong H, Enomoto N, Inada M, Tanaka Y, Hojo J (2014) Electrochim Acta 130:329–334

    Article  CAS  Google Scholar 

  71. Elseman AM, Sajid S, Shalan AE, Mohamed SA, Rashad MM (2019) Appl Phys A Mater Sci Process 125:476

    Article  Google Scholar 

  72. Chandiran AK, Tetreault N, Humphry-Baker R, Kessler F, Baranoff E, Yi C, Grätzel M (2012) Nano Lett 12:3941–3947

    Article  CAS  PubMed  Google Scholar 

  73. Maheswari D, Venkatachalam P (2014) Photonics Nanostruct-Fundam Appl 12:515–526

    Article  Google Scholar 

  74. Li F, Jiao Y, Xie S, Li J (2015) J Power Sources 280:373–378

    Article  CAS  Google Scholar 

  75. Cheng G, Akhtar MS, Yang OB, Stadler FJ (2013) ACS Appl Mater Interfaces 5:6635–6642

    Article  CAS  PubMed  Google Scholar 

  76. Shalan AE, Narra S, Oshikiri T, Ueno K, Shi X, Wu H-P, Elshanawany MM, Diau EW-G, Misawa H (2017) Sustain Energy Fuels 1:1533–1540

    Article  CAS  Google Scholar 

  77. Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH (2013) Nanoscale 5:6323–6326

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Cheng Y, Shu W, Peng Z, Chen K, Zhou J, Chen W, Zakharova GS (2014) Nanoscale 6:6755–6762

    Article  CAS  PubMed  Google Scholar 

  79. Roose B, Pathak S, Steiner U (2015) Chem Soc Rev 44:8326–8349

    Article  CAS  PubMed  Google Scholar 

  80. Wang KP, Teng H (2009) Phys Chem Chem Phys 11:9489–9496

    Article  CAS  PubMed  Google Scholar 

  81. Zhang J, Zhao Z, Wang X, Yu T, Guan J, Yu Z, Li Z, Zou Z (2010) J Phys Chem C 114:18396–18400

    Article  CAS  Google Scholar 

  82. Hafez H, Saif M, Abdel-Mottaleb MSA (2011) J Power Sources 196:5792–5796

    Article  CAS  Google Scholar 

  83. Guo W, Shen Y, Boschloo G, Hagfeldt A, Ma T (2011) Electrochim Acta 56:4611–4617

    Article  CAS  Google Scholar 

  84. Tian H, Hu L, Li W, Sheng J, Xu S, Dai S (2011) J Mater Chem 21:7074–7077

    Article  CAS  Google Scholar 

  85. Lee JH, Youn JI, Kim YJ, Kim IK, Jang KW, Oh HJ (2015) Ceram Int 41:11899–11907

    Article  CAS  Google Scholar 

  86. Qi K, Cheng B, Yu J, Ho W (2017) J Alloy Compd 727:792–820

    Article  CAS  Google Scholar 

  87. Sengupta D, Das P, Mondal B, Mukherjee K (2016) Renew Sustain Energy Rev 60:356–376

    Article  CAS  Google Scholar 

  88. Paranthaman MP, Wong-Ng W, Bhattacharya RN (eds) (2016) Semiconductor materials for solar photovoltaic cells. Springer International Publishing, Switzerland

    Google Scholar 

  89. Mahmood MA, Baruah S, Dutta J (2011) Mater Chem Phys 130:531–535

    Article  CAS  Google Scholar 

  90. Majdan M, Pikus S, Kowalska-Ternes M, Gładysz-Płaska A, Staszczuk P, Fuks L, Skrzypek H (2003) J Colloid Interface Sci 262:321–330

    Article  CAS  PubMed  Google Scholar 

  91. Lu Y, Lin Y, Xie T, Shi S, Fan H, Wang D (2012) Nanoscale 4:6393–6400

    Article  CAS  PubMed  Google Scholar 

  92. Ullah R, Dutta J (2008) J Hazard Mater 156:194–200

    Article  CAS  PubMed  Google Scholar 

  93. Deng QR, Xia XH, Guo ML, Gao Y, Shao G (2011) Mater Lett 65:2051–2054

    Article  CAS  Google Scholar 

  94. Yongchun L et al (2012) Nanoscale 4:6393–6400

    Article  Google Scholar 

  95. Sharma SS, Sharma K, Sharma V (2016) AIP Conf Proc 1728:020515

    Article  Google Scholar 

  96. Liu X, Yuan R, Liu Y, Zhu S, Lin J, Chen X (2016) New J Chem 40:6276–6280

    Article  CAS  Google Scholar 

  97. Llanos J, Brito I, Espinoza D, Sekar R, Manidurai P (2018) R Soc Open Sci 5:171054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mao X, Zhou R, Zhang S, Ding L, Wan L, Qin S, Chen Z, Xu J, Miao S (2016) Sci Rep 6:19390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patle LB, Chaudhari AL (2016) Int J Sci Eng Res 7(8):1004–1009

    Google Scholar 

  100. Song CB, Qiang YH, Zhao YL, Gu XQ, Zhu L, Song CJ, Liu X (2014) Int J Electrochem Sci 9:8090–8096

    Google Scholar 

  101. Lin J, Chen J, Chen X (2011) Nanoscale Res Lett 6:475

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tabari-Saadi Y, Mohammadiet MR (2015) J Mater Sci Mater Electron 26(11):8863–8876

    Article  CAS  Google Scholar 

  103. Song J, Yang HB, Wang X, Khoo SY, Wong CC, Liu XW, Li CM (2012) ACS Appl Mater Interfaces 4(7):3712–3717

    Article  CAS  PubMed  Google Scholar 

  104. Subramanian A, Wang HW (2012) Appl Surf Sci 258(17):6479–6484

    Article  CAS  Google Scholar 

  105. Bakhshayesh AM, Farajisafiloo N (2015) Appl Phys A 120(1):199–206

    Article  CAS  Google Scholar 

  106. Latini A, Cavallo C, Aldibaja FK, Gozzi D et al (2013) J Phys Chem C 117(48):25276–25289

    Article  CAS  Google Scholar 

  107. Tong Z, Peng T, Sun W, Liu W, Guo S, Zhao XZ (2014) J Phys Chem C 118(30):16892–16895

    Article  CAS  Google Scholar 

  108. Djurisic AB, Liu F, Ng AM, Dong Q, Wong MK, Ng A, Surya C (2016) Phys Status Solidi 10:281–299

    CAS  Google Scholar 

  109. Sharifi N, Tajabadi F, Taghavinia N (2014) Chem Phys Chem 15:3902–3927

    Article  CAS  PubMed  Google Scholar 

  110. Singh R (2013) IEEE J Electron Devices Soc 1:129–144

    Article  Google Scholar 

  111. Berginc M, Krasovec UO, Topic M (2014) Sol Energy Mater Sol Cells 120:491–499

    Article  CAS  Google Scholar 

  112. Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, de Villers BJT, Sellinger A, Berry JJ, Luther JM (2018) Nat Energy 3:68–74

    Article  CAS  Google Scholar 

  113. Bauer J, Wagner JM, Lotnyk A, Blumtritt H, Lim B, Schmidt J, Breitenstein O (2009) Phys Status Solidi RRL 3:40–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Current work was encouraged by funds from Central Metallurgical Research and Development Institute (CMRDI), Egypt. A.E.S. is grateful for the National Research grants from MINECO “Juan de la Cierva”, Spain, [FJCI-2018-037717] and is currently on leave from CMRDI

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Esmail Shalan.

Ethics declarations

Conflict of interest

No conflict of interest detected by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharam, M.M., El Shazly, A.N., Anand, K.V. et al. Semiconductors as Effective Electrodes for Dye Sensitized Solar Cell Applications. Top Curr Chem (Z) 379, 20 (2021). https://doi.org/10.1007/s41061-021-00334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00334-w

Keywords

Navigation