Skip to main content
Log in

Manganese(III) Porphyrin-Based Magnetic Materials

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Manganese(III) porphyrin complexes with various metal-containing/non-metal bridges reported during the past two decades, including their structural characteristics and magnetic properties, are summarized. As the porphyrin ligands usually adopt a planar chelate form, it is possible that the porphyrin-based complexes, being a coordination-acceptor building block, have two coordination labile sites in trans positions. In particular, the coordination labile sites in an octahedral field face the direction of the Jahn–Teller elongated axis occupying the dz2 orbital. As a result of this characteristic orbital arrangement, the activity and magnetic-electronic properties of the manganese complexes can be tuned by modulating the porphyrin ligand, which is equatorially located around the manganese ion and coupled with the dx2−y2 orbital. The high-spin Mn(III) porphyrin complexes (S = 2) display strong magnetic uniaxial anisotropy with the Jahn–Teller axis as the magnetic easy axis. So far, various manganese(III) porphyrin magnetism systems, including multinuclear clusters, one-dimensional chains, and two- or three-dimensional networks, have been designed and structurally and magnetically characterized. This review shows that the manganese(III) porphyrin complexes have potential as versatile sources for the design of unique magnetic materials as well as other molecular functional materials with various structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. [29]

Fig. 2

Adapted from Ref. [31]

Fig. 3

Adapted from Ref. [32]

Fig. 4

Reproduced with slight modification and permission from Ref. [36]. Copyright 2009 Elsevier B.V.

Fig. 5

Adapted from Ref. [37]. Copyright 2009 ACS and Ref. [38]. Copyright 2013 RSC

Fig. 6

Reproduced with slight modification and permission from Ref. [37]. Copyright 2009 ACS and Ref. [38]. Copyright 2013 RSC

Fig. 7

Reproduced with permission from Ref. [37]. Copyright 2009 ACS

Fig. 8

Reproduced with slight modification and permission from Ref. [34]. Copyright 2009 ACS and Ref. [38]. Copyright 2013 RSC

Fig. 9

Reproduced with slight modification and permission from Ref. [37]. Copyright 2009 ACS and Ref. [38]. Copyright 2013 RSC

Fig. 10

Reproduced with slight modification and permission from Ref. [39]. Copyright 2012 Elsevier B.V

Fig. 11
Fig. 12
Fig. 13
Fig. 14

Adapted from Ref. [64]. Copyright 2000 Wiley

Fig. 15

Adapted from Ref. [66]. Copyright 2001 RSC

Fig. 16

Adapted from Ref. [68]. Copyright 2012 ACS

Fig. 17

Adapted from Refs. [72, 73]. Copyright 1998 and 2001 RSC

Fig. 18

Adapted from Ref. [74]. Copyright 2008 ACS

Fig. 19

Reproduced with slight modification and permission from Ref. [74]. Copyright 2008 ACS

Fig. 20

Reproduced with permission from Ref. [74]. Copyright 2008 ACS

Fig. 21

Adapted from Ref. [75]

Fig. 22

Reproduced with slight modification and permission from Ref. [76]. Copyright 2005 ACS

Fig. 23

Adapted from Ref. [77]. Copyright 2010 RSC

Fig. 24

Reproduced with permission from Ref. [77]. Copyright 2010 RSC

Fig. 25

Reproduced with permission from Ref. [77]. Copyright 2010 RSC

Fig. 26

Reproduced with permission from Ref. [78]. Copyright 2014 RSC

Fig. 27

Reproduced with permission from Ref. [78]. Copyright 2014 RSC

Fig. 28

Adapted from Ref. [79]. Copyright 1998 Wiley

Fig. 29

Reproduced with permission from Ref. [81]. Copyright 1999 Wiley

Fig. 30

Reproduced with permission from Ref. [82]. Copyright 2006 RSC

Fig. 31

Reproduced with slight modification and permission from Ref. [83]. Copyright 2009 ACS

Similar content being viewed by others

Abbreviations

Bipymh:

N,N′-Bis(4-pyridylmethylidyne)hydrazine

bpb2− :

1,2-Bis(pyridine-2-carboxamido)benzoate

bpmb2− :

4-Methyl-1,2-bis(pyridine-2-carboxamido)benzoate

DMe-DCNQI:

2,5-Dimethyl-N,N′-dicyanoquinone diimine

DMeO-DCNQI:

2,5-Dimethoxy-N,N′-dicyanoquinone diimine

DMTCNQ:

7,7′,8,8′-Tetracyano-2,5-dimethyl-p-quinodimethanide

dpa :

Di(α-pyridyl)amido

DPyBFPP:

5,15-Dipyridyl-10,20-bis(pentafluorophenyl)porphinate

HBCD:

Hexacyanobutadiene

H2TP′P:

meso-Tetrakis[3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin

Im :

Imidazolate

meta-F:

Tetra(meta-fluorophenyl)porphyrin-tetracyanoethenide

OEP:

Octaethylporphinate

ortho-F:

Tetra(ortho-fluorophenyl)porphyrin-tetracyanoethenide

Pc:

Phthalocyaninate

QCl4 :

Tetrachloro-1,4-benzoquinone

TBrPP:

meso-Tetrakis(4-bromophenyl) porphinate

TClPP:

meso-Tetra(4-chlorophenyl)porphinate

TCNE:

Tetracyanoethylene

4-σ-(TCNQ)2]2− :

μ4-σ-Dimerized 7,7,8,8-tetracyano-p-quinodimethane dianion

TCQMI:

N,7,7-Tricyanoquinomethanimine

TDMeAPP:

meso-Tetra(4-dimethylaminophenyl)porphinate

TMeOPP:

meso-Tetra(4-methoxylphenyl)porphinate

TMesP:

meso-Tetrakis(2,4,6-trimethylphenyl)porphyrinate

TNPP:

meso-Tetra(4-nitrylphenyl)porphinate

TOHPP:

Tetra(4-hydroxyphenyl)porphinate

tpa:

Tris(2-pyridylmethyl)amine

TPP:

Tetraphenylporphinate

TPyP:

Tetra(4-pyridyl)porphyrin

TTMPP:

meso-Tetrakis(2,4,6-trimethylphenyl)porphyrinate

References

  1. Lee YA, Kim JO, Cho TS, Song R, Kim SK (2003) Binding of meso-tetrakis(N-methylpyridium-4-yl)porphyrin to triplex oligonucleotides: evidence for the porphyrin stacking in the major groove. J Am Chem Soc 125:8106–8107

    CAS  PubMed  Google Scholar 

  2. Kojima T, Harada R, Nakanishi T, Kaneko K, Fukuzumi S (2007) Porphyrin nanotubes based on self-assembly of Mo(V)-dodecaphenylporphyrin complexes and inclusion of Mo–Oxo clusters: synthesis and characterization by X-ray crystallography and transmission electron microscopy. Chem Mater 19:51–58

    CAS  Google Scholar 

  3. Imahori H, Arimura M, Hanada T, Nishimura Y, Yamazaki I, Sakata Y, Fukuzumi S (2001) Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters. J Am Chem Soc 123:335–336

    CAS  PubMed  Google Scholar 

  4. Bearinger JP, Stone G, Christian AT, Dugan L, Hiddessen AL, Wu K, Jen J, Wu L, Hamilton J, Stockton C, Hubbell JA (2008) Porphyrin-based photocatalytic lithography. Langmuir 24:5179–5184

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mojzeš P, Kruglik SG, Baumruk V, Turpin PY (2003) Interactions of electronically excited copper(II)-porphyrin with DNA: resonance raman evidence for the exciplex formation with adenine and cytosine residues. J Phys Chem B 107:7532–7535

    Google Scholar 

  6. Bian YZ, Jiang JZ, Tao Y, Choi MTM, Li RJ, Anthony Ng CH, Zhu PH, Pan N, Sun X, Arnold DP, Zhou ZY, Li HW, Mak TCW, Ng DKP (2003) Tuning the valence of the cerium center in (Na)phthalocyaninate and porphyrinate cerium double-deckers by changing the nature of the tetrapyrrole ligands. J Am Chem Soc 125:12257–12267

    CAS  PubMed  Google Scholar 

  7. Kazazić S, Klasinc L, McGlynn SP, Srzić D, Vicente MGH (2004) Gas-phase metallation reactions of porphyrins with metal monocations. J Phys Chem A 108:10997–11000

    Google Scholar 

  8. Okamoto K, Fukuzumi S (2003) Self-promoted electron transfer from cobalt(II) porphyrin to p-fluoranil to produce a dimer radical anion-cobalt(III) porphyrin complex. J Am Chem Soc 125:12416–12417

    CAS  PubMed  Google Scholar 

  9. Fukuzumi S, Ohkubo KEW, Ou ZP, Shao JG, Kadish KM, Hutchison JA, Ghiggino KP, Sintic PJ, Crossley MJ (2003) Metal-centered photoinduced electron transfer reduction of a gold(III) porphyrin cation linked with a zinc porphyrin to produce a long-lived charge-separated state in nonpolar solvents. J Am Chem Soc 125:14984–14985

    CAS  PubMed  Google Scholar 

  10. Hecht S, Ihre H, Fréchet JMJ (1999) Porphyrin core star polymers: synthesis, modification, and implication for site isolation. J Am Chem Soc 121:9239–9240

    CAS  Google Scholar 

  11. Suijkerbuijk BMJM, Klein Gebbink G, Robertus JM (2008) Merging porphyrins with organometallics: synthesis and applications. Angew Chem Int Ed 47:7396–7421

    CAS  Google Scholar 

  12. Ikeda C, Satake A, Kobuke Y (2003) Proofs of macrocyclization of gable porphyrins as mimics of photosynthetic light-harvesting complexes. Org Lett 5:4935–4938

    CAS  PubMed  Google Scholar 

  13. Li BS, Li J, Fu YQ, Bo ZS (2004) Porphyrins with four monodisperse oligofluorene arms as efficient red light-emitting materials. J Am Chem Soc 126:3430–3431

    CAS  PubMed  Google Scholar 

  14. Zhou XL, Kang SW, Kumar S, Kulkarni RR, Cheng SZD, Li Q (2008) Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing. Chem Mater 20:3551–3553

    CAS  Google Scholar 

  15. Jiang JZ, Dennis KPN (2009) A decade journey in the chemistry of sandwich-type tetrapyrrolato-rare earth complexes. Acc Chem Res 42:79–88

    CAS  PubMed  Google Scholar 

  16. Wong WY, Harvey PD (2010) Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-bis(paraethynylbenzene)bis(phosphine)platinum(II) chromophore and related derivatives. Macromol Rapid Commun 31:671–713

    CAS  PubMed  Google Scholar 

  17. Xu LL, Ho CL, Liu L, Wong WY (2018) Molecular/polymeric metallaynes and related molecules: solar cell materials and devices. Coord Chem Rev 373:233–257

    CAS  Google Scholar 

  18. Zhu XJ, Wong WK, Wong WY, Yang XP (2011) Design and synthesis of near-infrared emissive lanthanide complexes based on macrocyclic ligands. Eur J Inorg Chem 2011:4651–4674

    CAS  Google Scholar 

  19. Cornia A, Mannini M, Sainctavit P, Sessoli R (2011) Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 40:3076–3091

    CAS  PubMed  Google Scholar 

  20. Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40:3249–3265

    CAS  PubMed  Google Scholar 

  21. Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336–3355

    CAS  PubMed  Google Scholar 

  22. Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104

    CAS  PubMed  Google Scholar 

  23. Ferrando-Soria J, Serra-Crespo P, Lange MD, Gascon J, Kapteijn F, Julve M, Cano J, Lloret F, Pasán J, Ruiz-Pérez C, Journaux Y, Pardo EJ (2012) Selective gas and vapor sorption and magnetic sensing by an isoreticular mixed-metal–organic framework. J Am Chem Soc 134:15301–15304

    CAS  PubMed  Google Scholar 

  24. Roques N, Mugnaini V, Veciana J (2010) Magnetic and porous molecule-based materials. Top Curr Chem 293:207–258

    CAS  PubMed  Google Scholar 

  25. Nowicka B, Korzeniak T, Stefańczyk O, Pinkowicz D, Chorąży S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256:1946–1971

    CAS  Google Scholar 

  26. Wang XY, Avendaño C, Dunbar KR (2011) Molecular magnetic materials based on 4d and 5d transition metals. Chem Soc Rev 40:3213–3238

    CAS  PubMed  Google Scholar 

  27. Mitra S (1977) Chemical applications of magnetic anisotropy studies on transition metal complexes. Prog Inorg Chem 22:309–312

    CAS  Google Scholar 

  28. Figgis BN (1960) Magnetic properties of transition metal ions in asymmetric ligand fields. Part 1. Cubic field A and E terms. Trans Faraday Soc 56:1553–1558

    CAS  Google Scholar 

  29. Miyasaka H, Saitoh A, Abe S (2007) Magnetic assemblies based on Mn(III) salen analogues. Coord Chem Rev 251:2622–2664

    CAS  Google Scholar 

  30. Gerritsen HJ, Sabisky ES (1963) Paramagnetic resonance of trivalent manganese in rutile (TiO2). Phys Rev 132:1507–1512

    CAS  Google Scholar 

  31. Cheng B, Cukiernik F, Fries PH, Marchon JC, Scheidt WR (1995) A novel dimanganese(III) complex with a single hydroxo bridge. syntheses, structures, and magnetic susceptibilities of (μ-hydroxo)bis((octaethylporphinate)manganese(III)) perchlorate and a monomeric precursor, aquo(octaethylporphinate)manganese(III) perchlorate. Inorg Chem 34:4627–4639

    CAS  Google Scholar 

  32. Cheng B, Fries PH, Marchon JC, Scheidt WR (1996) A nearly linear single hydroxo bridge. Synthesis, structure, and magnetic susceptibility of (μ-hydroxo)bis((tetraphenylporphinate)manganese(III)) perchlorate. Inorg Chem 35:1024–1032

    CAS  PubMed  Google Scholar 

  33. Suslick KS, Watson RA, Wilson SR (1991) Structure and photochemistry of manganese porphyrin sulfate complexes. Inorg Chem 30:2311–2317

    CAS  Google Scholar 

  34. Donzello MP, Bartolino L, Ercolani C, Rizzoli C (2006) A rare μ-hydroxo-bridged species. Synthesis, structure, and properties of μ-hydroxo(tetraphenylporphyrinatomanganese(III))(phthalocyaninate(azido)chromium(III)), [(TPP)Mn-O(H)-CrPc(N3)]. Inorg Chem 45:6988–6995

    CAS  PubMed  Google Scholar 

  35. Donzello MP, Ercolani C, Russo U, Chiesi-Villa A, Rizzoli C (2001) Metal- and ligand-centered monoelectronic oxidation of μ-nitrido[((tetraphenylporphyrinate)manganese)(phthalocyaninatoiron)], [(TPP)Mn-N-FePc]. X-ray crystal structure of the Fe(IV)-containing species [(THF)(TPP)Mn-N-FePc(H2O)](I5)·2THF. Inorg Chem 40:2963–2967

    CAS  PubMed  Google Scholar 

  36. Zhang DP, Wang HL, Chen Y, Ni ZH, Tian LJ, Jiang JZ (2009) Synthesis, crystal structure and magnetic property of an unusual formate-bridged heterometallic binuclear CrIIIMnIII porphyrin complex. Inorg Chem Commun 12:698–700

    CAS  Google Scholar 

  37. Zhang DP, Wang HL, Tian LJ, Kou HZ, Jiang JZ, Ni ZH (2009) Synthesis, crystal structures, and magnetic properties of cyanide-bridged Fe(III)–Mn(III) complexes based on manganese(III)-porphyrin and pyridinecarboxamide dicyanideiron(III) building blocks. Crystal Growth Des 9:3989–3996

    CAS  Google Scholar 

  38. Zhang DP, Zhao ZD, Wang P, Ni ZH (2013) Substituent group tuned tri- and binuclear porphyrin-based cyanide-bridged bimetallic complexes: synthesis, crystal structures and magnetic properties. CrystEngComm 15:2504–2511

    CAS  Google Scholar 

  39. Li GL, Nie J, Chen H, Ni ZH, Zhao Y, Zhang LF (2012) Syntheses, crystal structures and magnetic properties of two FeIII–MnIII complexes based on manganese(III)-porphyrin and tetracyanideferrite(III) building blocks. Inorg Chem Commun 19:66–69

    Google Scholar 

  40. Huh S, Youm KT, Park YJ, Lough AJ, Ohba M, Jun MJ (2005) Trinuclear MnIII-NC-FeIII-CN-MnIII ferromagnetic system. Bull Korean Chem Soc 26:1031–1032

    CAS  Google Scholar 

  41. Kim Y, Choi SK, Park SM, Nam W, Kim SJ (2002) Synthesis and reactivity of rhenium cluster-supported manganese porphyrin complexes. Inorg Chem Commun 5:612–615

    CAS  Google Scholar 

  42. Visinescu D, Toma LM, Cano J, Fabelo O, Ruiz-Pérez C, Labrador A, Lloret F, Julve M (2010) Magnetic coupling in discrete cyano-bridged MnIII-FeIII motifs: synthesis, crystal structure, magnetic properties and theoretical study. Dalton Trans 39:5028–5038

    CAS  PubMed  Google Scholar 

  43. Ni WW, Ni ZH, Cui AL, Liang X, Kou HZ (2007) Cyanide-bridged Mn(III)–Fe(III) bimetallic complexes based on the pentacyano(1-methylimidazole)ferrate(III) building block: structure and magnetic characterizations. Inorg Chem 46:22–33

    CAS  PubMed  Google Scholar 

  44. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew Chem Int Ed 40:1760–1763

    CAS  Google Scholar 

  45. Clérac R, Miyasaka H, Yamashita M, Coulon C (2002) Evidence for single-chain magnet behavior in a MnIII–NiII chain designed with high spin magnetic units: a route to high temperature metastable magnets. J Am Chem Soc 124:12837–12844

    PubMed  Google Scholar 

  46. Glauber RJ (1963) Time-dependent statistics of the Ising model. J Math Phys 4:294–307

    Google Scholar 

  47. Miller JS, Calabrese JC, McLean RS, Epstein AJ (1992) Meso-(tetraphenylporphinate)manganese(III)-tetracyanoethenide, [MnIIITPP]•⊕[TCNE] . A new structure-type linear-chain magnet with a Tc of 18K. Adv Mater 4:498–501

    CAS  Google Scholar 

  48. Miller JS, Vazquez C, Calabrese JC, McLean RS, Epstein AJ (1994) Cooperative magnetic behavior of α- and β-manganese(III) phthalocyanine tetracyanoethenide (1:1), [MnIIIPc] •⊕[TCNE] •⊖. Adv Mater 6:217–221

    CAS  Google Scholar 

  49. Miller JS, Vazquez C, Jones NL, Mclean RS, Epstein AJ (1995) Magnetic behaviour of octaethylporphyrinatomanganese(III) tetracyanoethenide, [MnOEP][TCNE], and hexacyanobutadienide, [MnOEP][C4(CN)6]: the importance of a uniform chain for stabilizing strong effective ferromagnetic coupling. J Mater Chem 5:707–711

    CAS  Google Scholar 

  50. Böhm A, Vazquez C, McLean RS, Calabrese JC, Kalm SE, Manson JL, Epstein AJ, Miller JS (1996) Weak effect on Tc with increased interchain distances. Structure and magnetic properties of (meso-tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphinate)manganese(III) tetracyanoethenide, [MnIIITP′P]+[TCNE]•−. Inorg Chem 35:3083–3088

    PubMed  Google Scholar 

  51. Sugiura KI, Mikami S, Tanaka T, Sawada M, Manson JL, Miller JS, Sakata Y (1997) Magnetic ordering of 5,10,15,20-tetrakis[4′-(trifluoromethyl)phenyl]-porphyrinatomanganese(III) tetracyanoethenide with a 6.0 K Tc. Chem Lett 26:1071–1072

    Google Scholar 

  52. Sugiura KI, Arif AM, Rittenberg DK, Schweizer J, Öhrstrom L, Epstein AJ, Miller JS (1997) The importance of magnetic coupling through atoms with large spin densities-structure and magnetic properties of meso-tetrakis-(4′-tert-butylphenyl)porphinatomanganese(III) hexacyanobutadienide, [MnIIITtBuPP]+[C4(CN)6]. Chem Eur J 3:138–142

    CAS  Google Scholar 

  53. Sugiura KI, Mikami S, Tanaka T, Sawada M, Sakata Y (1998) Cheminform abstract: isolation and molecular structure of 1,1,2,4,5,5-hexacyano-1,4-pentadienyl anion (III). An unusual reaction of tetracyanoethylene with p-xylene mediated by a porphyrinatomanganese(II). Chem Lett 27:103–104

    Google Scholar 

  54. Brandon EJ, Rittenberg DK, Arif AM, Miller JS (1998) Ferrimagnetic behavior of multiple phases and solvates of (meso-tetrakis(4-chlorophenyl)porphinate)manganese(III) tetracyanoethenide, [MnTClPP]+[TCNE]•−. Enhancement of magnetic coupling by thermal annealing. Inorg Chem 37:3376–3384

    CAS  Google Scholar 

  55. Brandon EJ, Arif AM, Burkhart BM, Miller JS (1998) Structure and magnetic properties of antiferromagnetic manganese(III) tetrakis(4-methoxyphenyl)porphyrin tetracyanoethenide, [MnTOMePP][TCNE]·2PhMe, and manganese(III) tetrakis(2-fluorophenyl)porphyrin tetracyanoethenide, [MnTFPP][TCNE]·2PhMe. Inorg Chem 37:2792–2798

    CAS  PubMed  Google Scholar 

  56. Yates ML, Arif AM, Manson JL, Kalm BA, Burkhart BM, Miller JS (1998) Structure and magnetic properties of (meso-tetraphenylporphinate)manganese(III) pentacyanopropenide, [MnIIITPP]+[C3(CN)5]. An unusual asymmetric bridge-bonding mode for μ-[C3(CN)5]. Inorg Chem 37:840–841

    CAS  Google Scholar 

  57. Miller JS, Epstein AJ (1998) Tetracyanoethylene-based organic magnets. Chem Commun (13):1319–1325

    Google Scholar 

  58. Sugiura KI, Mikami S, Johnson MT, Miller JS, Iwasaki K, Umishita K, Hino S, Sakata Y (1999) First isolation and characterization of an electron transfer salt of a tetracyanoquinodimethane with porphyrinatomanganese(II) having novel cis-μ-coordination manner: a molecule-based magnet with a 2.3 K Tc. Chem Lett 31:925–926

    Google Scholar 

  59. Rittenberg DK, Miller JS (1999) Observation of magnetic ordering as high as 28 K for meso-tetrakis(4-halophenyl)porphinatomanganese(III) tetracyanoethenide, [MnTXPP][TCNE] (X = F, Br, I). Inorg Chem 38:4838–4848

    CAS  PubMed  Google Scholar 

  60. Rittenberg DK, Sugiura KI, Sakata Y, Mikami S, Epstein AJ, Miller JS (2000) Large coercivity and high remanent magnetization organic-based magnets. Adv Mater 12:126–130

    CAS  Google Scholar 

  61. Rittenberg DK, Arif AM, Miller JS (2000) Effect of thermal annealing on the ferrimagnetic behavior and ordering of the [MnTXPP]+[TCNE]˙·solv (X = F, Cl, Br, I; solv = PhMe, CH2Cl2) family of magnets. J Chem Soc Dalton Trans (21):3939–3948

    Google Scholar 

  62. Johnson MT, Arif AM, Miller JS (2000) Structure and magnetic properties of tetrakis(3,4,5-trimethoxy-phenyl)porphinatomanganese(III) 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethenide: the first example of an isolated [TCNQF4]. Eur J Inorg Chem 2000:1781–1787

    Google Scholar 

  63. Miller JS (2000) Organometallic- and organic-based magnets: new chemistry and new materials for the new millennium. Inorg Chem 39:4392–4408

    CAS  Google Scholar 

  64. Rittenberg DK, Sugiura KI, Arif AM, Sakata Y, Incarvito CD, Rheingold AL, Miller JS (2000) Products from the reaction of meso-tetrakis(4-halophenyl)porphinate-manganese(II) and hexacyanobutadiene (HCBD): formation of π-[HCBD] 2−2 dimers, μ-[HCBD], σ-[HCBD], and [C4(CN)5O]. Chem Eur J 6:1811–1819

    CAS  PubMed  Google Scholar 

  65. Sugiura KI, Mikami S, Johnson MT, Miller JS, Iwasaki K, Umishita K, Hino S, Sakata Y (2000) Structure and magnetic properties of meso-tetrakis(2,4,6-trimethylphenyl)porphyrinatomanganese(III) 7,7,8,8-tetracyano-2,5-dimethyl-p-quinodimethanide with a 2.3 K Tc. The first example of cis coordination of a tetracyano-p-quinodimethanide. J Mater Chem 10:959–964

    CAS  Google Scholar 

  66. Sugiura KI, Mikami S, Johnson MT, Raebiger JW, Miller JS, Iwasaki K, Okada Y, Hino S, Sakata Y (2001) Ferrimagnetic ordering of one-dimensional N,N′-dicyanoquinone diimine (DCNQI) electron transfer salts with porphyrinatomanganese(II). J Mater Chem 11:2152–2158

    CAS  Google Scholar 

  67. Arthur JL, Moore CE, Rheingold AL, Miller JS (2011) Stabilization of magnetic ordering observed for the bridging NCN group. Inorg Chem 50:2735–2737

    CAS  PubMed  Google Scholar 

  68. Tomkowicz Z, Rams M, Bałanda M, Foro S, Nojiri H, Krupskaya Y, Kataev V, Büchner B, Nayak SK, Yakhmi JV, Haase W (2012) Slow magnetic relaxations in manganese(III) tetra(meta-fluorophenyl)porphyrin-tetracyanoethenide. Comparison with the relative single chain magnet ortho compound. Inorg Chem 51:9983–9994

    CAS  PubMed  Google Scholar 

  69. Brandon EJ, Rogers RD, Burkhart BM, Miller JS (1998) The structure and ferrimagnetic behavior of meso-tetraphenyl-porphinatomanganese(III) tetrachloro-1,4-benzoquinonide, [MnIIITPP]+[QCl4]·PhMe: evidence of a quinoidal structure for [QCl4]. Chem Eur J 4:1938–1943

    CAS  Google Scholar 

  70. Landrum JT, Hatano K, Scheidt WR, Reed CA (1980) Imidazolate complexes of iron and manganese tetraphenylporphyrins. J Am Chem Soc 102:6729–6735

    CAS  Google Scholar 

  71. Turner P, Gunter MJ, Hambley TW, White AH, Skelton BW (1992) Two unusual fonnate-bridged manganese(III) tetraphenylporphyrin complexes. Inorg Chem 31:2295–2297

    CAS  Google Scholar 

  72. Kumar RK, Balasubramanian S, Goldberg I (1998) Crystal engineering with tetraarylporphyrins, an exceptionally versatile building block for the design of multidimensional supramolecular structures. Chem Commun (14):1435–1436

    Google Scholar 

  73. Diskin-Posner Y, Patra GK, Goldberg I (2001) Supramolecular assembly of metalloporphyrins in crystals by axial coordination through amine ligands. J Chem Soc Dalton Trans (19):2775–2782

    Google Scholar 

  74. Bernot K, Luzon J, Sessoli R, Vindigni A, Thion J, Richeter S, Leclercq D, Larionova J, van der Lee A (2008) The canted antiferromagnetic approach to single-chain magnets. J Am Chem Soc 130:1619–1627

    CAS  PubMed  Google Scholar 

  75. Tsao TB, Lee GH, Yeh CY, Peng SM (2003) Supramolecular assembly of linear trinickel complexes incorporating metalloporphyrins: a novel one-dimensional polymer and oligomer. Dalton Trans (8):1465–1471

    Google Scholar 

  76. Dawe LN, Miglioi J, Turnbow L, Taliaferro ML, Shum WW, Bagnato JD, Zakharov LN, Rheingold AL, Arif AM, Fourmigué M, Miller JS (2005) Structure and magnetic properties of (meso-tetraphenylporphinato)manganese(III) bis(dithiolato)nickelates. Inorg Chem 44:7530–7539

    CAS  PubMed  Google Scholar 

  77. Zhang DP, Zhang LF, Chen YT, Wang HL, Ni ZH, Wernsdorfer W, Jiang JZ (2010) Heterobimetallic porphyrin-based single-chain magnet constructed from manganese(III)-porphyrin and trans-dicyanobis(acetylacetonato) ruthenate(III) containing co-crystallized bulk anions and cations. Chem Commun 46:3550–3552

    CAS  Google Scholar 

  78. Chen X, Wu SQ, Cui AL, Kou HZ (2014) A cyano-bridged single-chain magnet featuring alternate high- and low-spin manganese(III) porphyrins. Chem Commun 50:2120–2122

    CAS  Google Scholar 

  79. Kumar RK, Goldberg I (1998) Supramolecular assembly of heterogeneous multiporphyrin arrays—structures of [{ZnII(tpp)}2(tpyp)] and the coordination polymer [{[MnIII(tpp)]2(tpyp)(ClO4)2}∞]. Angew Chem Int Ed 37:3027–3030

    CAS  Google Scholar 

  80. Mikami S, Sugiura KI, Miller JS, Sakata Y (1999) Two-dimensional honeycomb network formed by porphyrinatomanganese(III) and μ4-σ-dimerized 7,7,8,8-tetracyano-p-quinodimethane dianion. Chem Lett 28:413–414

    Google Scholar 

  81. Lin KJ (1999) SMTP-1: the first functionalized metalloporphyrin molecular sieves with large channels. Angew Chem Int Ed 38:2730–2732

    CAS  Google Scholar 

  82. George S, Lipstman S, Muniappan S, Goldberg I (2006) Porphyrin network solids: examples of supramolecular isomerism, noncentrosymmetric architectures and competing solvation. CrystEngComm 8:417–424

    CAS  Google Scholar 

  83. Barron PM, Son HT, Hu CH, Choe W (2009) Highly tunable heterometallic frameworks constructed from paddle-wheel units and metalloporphyrins. Cryst Growth Des 9:1960–1965

    CAS  Google Scholar 

  84. Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal-organic framework materials. J Am Chem Soc 133:5652–5655

    CAS  PubMed  Google Scholar 

  85. Chandrasekhar S, Sadashiva BK, Suresh KA (1977) Liquid crystals of disc-like molecules. Pramana J Phys 9:471–480

    CAS  Google Scholar 

  86. Griesar K, Athanassopoulou MA, Bustamante ES, Haase W, Tomkowicz Z, Zaleski AJ, Haase W (1997) A ferrimagnetically coupled liquid crystal. Adv Mater 9:45–48

    CAS  Google Scholar 

  87. Hill J, Sugino T, Shimizu Y (1999) Synthesis and characterization of some manganese complexes of 5,10,15,20-tetrakis(4-n-dodecylphenyl)porphyrin, molecular crystals and liquid crystals science and technology. Mol Cryst Liq Cryst 332:119–125

    Google Scholar 

  88. Haase W, Wrobel S, Falk K (2003) Recent results on some columnar paramagnetic metallomesogens. Pramana J Phys 61:189–198

    CAS  Google Scholar 

  89. Winter H, Kelemen M, Dormann E, Gompper R, Janner R, Kothrade S, Wagner B (1995) Characterisation of new organic ligand-based magnets: [MNTTP][TCNE] and [MnTTP][TCNQ]. Mol Cryst Liq Cryst 273:111–116

    Google Scholar 

  90. Brandon EJ, Miller JS, Brinckerhoff WB, Zhou P, Epstein AJ (1994) In: 4th international conference on molecule based magnets, Salt Lake City, October 1994

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (Nos. 21671121, 21773006), National Key Basic Research Program of China (Grant Nos. 2013CB933402 and 2012CB224801), Program for New Century Excellent Talents in University, Fundamental Research Funds for the Central Universities and Beijing Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhong Bian or Jianzhuang Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lan, W., Zhou, Z. et al. Manganese(III) Porphyrin-Based Magnetic Materials. Top Curr Chem (Z) 377, 18 (2019). https://doi.org/10.1007/s41061-019-0244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0244-5

Keywords

Navigation