Skip to main content
Log in

Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π–π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25:4845–4867

    Article  CAS  Google Scholar 

  2. Chen F, Hihath J, Huang ZF, Li XL, Tao NJ (2007) Measurement of single-molecule conductance. Annu Rev Phys Chem 58:535–564

    Article  CAS  Google Scholar 

  3. Huang CC, Rudnev AV, Hong WJ, Wandlowski T (2015) Break junction under electrochemical gating: Testbed for single-molecule electronics. Chem Soc Rev 44:889–901

    Article  CAS  Google Scholar 

  4. Xiang D, Wang XL, Jia CC, Lee T, Guo XF (2016) Molecular-scale electronics: From concept to function. Chem Rev 116:4318–4440

    Article  CAS  Google Scholar 

  5. Chen F, Li XL, Hihath J, Huang ZF, Tao NJ (2006) Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J Am Chem Soc 128:15874–15881

    Article  CAS  Google Scholar 

  6. Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) Contact chemistry and single-molecule conductance: A comparison of phosphines, methyl sulfides, and amines. J Am Chem Soc 129:15768–15769

    Article  CAS  Google Scholar 

  7. Hong WJ, Manrique DZ, Moreno-Garcia P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T (2012) Single molecular conductance of tolanes: Experimental and theoretical study on the junction evolution dependent on the anchoring group. J Am Chem Soc 134:2292–2304

    Article  CAS  Google Scholar 

  8. Kaliginedi V, Rudnev AV, Moreno-Garcia P, Baghernejad M, Huang CC, Hong WJ, Wandlowski T (2014) Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys 16:23529–23539

    Article  CAS  Google Scholar 

  9. Capozzi B, Dell EJ, Berkelbach TC, Reichman DR, Venkataraman L, Campos LM (2014) Length-dependent conductance of oligothiophenes. J Am Chem Soc 136:10486–10492

    Article  CAS  Google Scholar 

  10. Moreno-Garcia P, Gulcur M, Manrique DZ, Pope T, Hong WJ, Kaliginedi V, Huang CC, Batsanov AS, Bryce MR, Lambert C, Wandlowski T (2013) Single-molecule conductance of functionalized oligoynes: Length dependence and junction evolution. J Am Chem Soc 135:12228–12240

    Article  CAS  Google Scholar 

  11. Prins F, Barreiro A, Ruitenberg JW, Seldenthuis JS, Aliaga-Alcalde N, Vandersypen LMK, van der Zant HSJ (2011) Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett 11:4607–4611

    Article  CAS  Google Scholar 

  12. Diez-Perez I, Li ZH, Guo SY, Madden C, Huang HL, Che YK, Yang XM, Zang L, Tao NJ (2012) Ambipolar transport in an electrochemically gated single-molecule field-effect transistor. ACS Nano 6:7044–7052

    Article  CAS  Google Scholar 

  13. Li Y, Baghernejad M, Qusiy A-G, Manrique DZ, Zhang G, Hamill J, Fu Y, Broekmann P, Hong WJ, Wandlowski T, Zhang D, Lambert C (2015) Three-state single-molecule naphthalenediimide switch: Integration of a pendant redox unit for conductance tuning. Angew Chem Int Ed 54:13586–13589

    Article  CAS  Google Scholar 

  14. Osorio HM, Catarelli S, Cea P, Gluyas JB, Hartl F, Higgins SJ, Leary E, Low PJ, Martin S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Milan DC, Zeng Q (2015) Electrochemical single-molecule transistors with optimized gate coupling. J Am Chem Soc 137:14319–14328

    Article  CAS  Google Scholar 

  15. Arroyo CR, Tarkuc S, Frisenda R, Seldenthuis JS, Woerde CH, Eelkema R, Grozema FC, van der Zant HS (2013) Signatures of quantum interference effects on charge transport through a single benzene ring. Angew Chem Int Ed 52:3152–3155

    Article  CAS  Google Scholar 

  16. Markussen T, Schiotz J, Thygesen KS (2010) Electrochemical control of quantum interference in anthraquinone-based molecular switches. J Chem Phys 132:224104

    Article  Google Scholar 

  17. Markussen T, Stadler R, Thygesen KS (2010) The relation between structure and quantum interference in single-molecule junctions. Nano Lett 10:4260–4265

    Article  CAS  Google Scholar 

  18. Manrique DZ, Huang CC, Baghernejad M, Zhao XT, Al-Owaedi OA, Sadeghi H, Kaliginedi V, Hong WJ, Gulcur M, Wandlowski T, Bryce MR, Lambert CJ (2015) A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat Commun 6:6389

    Article  CAS  Google Scholar 

  19. Frisenda R, Janssen VAEC, Grozema FC, van der Zant HSJ, Renaud N (2016) Mechanically controlled quantum interference in individual π-stacked dimers. Nat Chem. doi:10.1038/NCHEM.2588

    Google Scholar 

  20. Li XL, He J, Hihath J, Xu BQ, Lindsay SM, Tao NJ (2006) Conductance of single alkanedithiols: Conduction mechanism and effect of molecule-electrode contacts. J Am Chem Soc 128:2135–2141

    Article  CAS  Google Scholar 

  21. Sergueev N, Tsetseris L, Varga K, Pantelides S (2010) Configuration and conductance evolution of benzene-dithiol molecular junctions under elongation. Phys Rev B 82:073106

    Article  Google Scholar 

  22. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904–907

    Article  CAS  Google Scholar 

  23. Finch CM, Sirichantaropass S, Bailey SW, Grace IM, García-Suárez VM, Lambert CJ (2008) Conformation dependence of molecular conductance: Chemistry versus geometry. J Phys Condens Matter 20:022203

    Article  Google Scholar 

  24. Mishchenko A, Vonlanthen D, Meded V, Burkle M, Li C, Pobelov IV, Bagrets A, Viljas JK, Pauly F, Evers F, Mayor M, Wandlowski T (2010) Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett 10:156–163

    Article  CAS  Google Scholar 

  25. Li H, Garner MH, Shangguan Z, Zheng Q, Su TA, Neupane M, Li P, Velian A, Steigerwald ML, Xiao S, Nuckolls C, Solomon GC, Venkataraman L (2016) Conformations of cyclopentasilane stereoisomers control molecular junction conductance. Chem Sci 7:5657–5662

    Article  CAS  Google Scholar 

  26. Bui PT, Nishino T, Yamamoto Y, Shiigi H (2013) Quantitative exploration of electron transfer in a single noncovalent supramolecular assembly. J Am Chem Soc 135:5238–5241

    Article  CAS  Google Scholar 

  27. Zhang W, Gan S, Vezzoli A, Davidson RJ, Milan DC, Luzyanin KV, Higgins SJ, Nichols RJ, Beeby A, Low PJ, Li B, Niu L (2016) Single-molecule conductance of viologen-cucurbit[8]uril host-guest complexes. ACS Nano 10:5212–5220

    Article  CAS  Google Scholar 

  28. Wang L, Gong ZL, Li SY, Hong WJ, Zhong YW, Wang D, Wan LJ (2016) Molecular conductance through a quadruple-hydrogen-bond-bridged supramolecular junction. Angew Chem Int Ed 55:12393–12397

    Article  CAS  Google Scholar 

  29. Hong WJ, Li H, Liu SX, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T (2012) Trimethylsilyl-terminated oligo(phenylene ethynylene)s: An approach to single-molecule junctions with covalent Au–C σ-bonds. J Am Chem Soc 134:19425–19431

    Article  CAS  Google Scholar 

  30. Huang CC, Chen SJ, Baruel Ornso K, Reber D, Baghernejad M, Fu YC, Wandlowski T, Decurtins S, Hong WJ, Thygesen KS, Liu SX (2015) Controlling electrical conductance through a pi-conjugated cruciform molecule by selective anchoring to gold electrodes. Angew Chem Int Ed 54:14304–14307

    Article  CAS  Google Scholar 

  31. Aragones AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML (2016) Electrostatic catalysis of a Diels-Alder reaction. Nature 531:88–91

    Article  CAS  Google Scholar 

  32. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Article  CAS  Google Scholar 

  33. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Measurement of single-molecule conductivity using the spontaneous formation of molecular wires. Phys Chem Chem Phys 6:4330–4337

    Article  CAS  Google Scholar 

  34. Nishino T, Hayashi N, Bui PT (2013) Direct measurement of electron transfer through a hydrogen bond between single molecules. J Am Chem Soc 135:4592–4595

    Article  CAS  Google Scholar 

  35. Bui PT, Nishino T (2014) Electron transfer through coordination bond interaction between single molecules: Conductance switching by a metal ion. Phys Chem Chem Phys 16:5490–5494

    Article  CAS  Google Scholar 

  36. Wimmer M, Palma JL, Tarakeshwar P, Mujica V (2016) Single-molecule conductance through hydrogen bonds: The role of resonances. J Phys Chem Lett 7:2977–2980

    Article  Google Scholar 

  37. Li Y, Tu XC, Wang ML, Wang H, Sanvito S, Hou S (2014) Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes. J Chem Phys 141:174702

    Article  Google Scholar 

  38. Livshits GI, Stern A, Rotem D, Borovok N, Eidelshtein G, Migliore A, Penzo E, Wind SJ, Di Felice R, Skourtis SS, Cuevas JC, Gurevich L, Kotlyar AB, Porath D (2014) Long-range charge transport in single G-quadruplex DNA molecules. Nat Nanotech 9:1040–1046

    Article  CAS  Google Scholar 

  39. Timper J, Gutsmiedl K, Wirges C, Broda J, Noyong M, Mayer J, Carell T, Simon U (2012) Surface “click” reaction of DNA followed by directed metalization for the construction of contactable conducting nanostructures. Angew Chem Int Ed 51:7586–7588

    Article  CAS  Google Scholar 

  40. Chang S, He J, Kibel A, Lee M, Sankey O, Zhang PM, Lindsay S (2009) Tunnelling readout of hydrogen-bonding-based recognition. Nat Nanotechnol 4:297–301

    Article  CAS  Google Scholar 

  41. Nishino T, Bui PT (2013) Direct electrical single-molecule detection of DNA through electron transfer induced by hybridization. Chem Commun 49:3437

    Article  CAS  Google Scholar 

  42. Phuc Tan B, Nishino T, Shiigi H, Nagaoka T (2015) One-by-one single-molecule detection of mutated nucleobases by monitoring tunneling current using a DNA tip. Chem Commun 51:1666–1669

    Article  Google Scholar 

  43. Sowers LC, Shaw BR, Sedwick WD (1987) Base stacking and molecular polarizability-effect of a methyl-group in the 5-position of pyrimidines. Biochem Biophys Res Commun 148:790–794

    Article  CAS  Google Scholar 

  44. Wang SH, Kool ET (1995) Origins of the large differences in stability of DNA and RNA helice-C-5 methyl and 2′-hydroxyl effects. Biochem 34:4125–4132

    Article  CAS  Google Scholar 

  45. Wu S, Gonzalez MT, Huber R, Grunder S, Mayor M, Schoenenberger C, Calame M (2008) Molecular junctions based on aromatic coupling. Nat Nanotechnol 3:569–574

    Article  CAS  Google Scholar 

  46. Martin S, Grace I, Bryce MR, Wang C, Jitchati R, Batsanov AS, Higgins SJ, Lambert CJ, Nichols RJ (2010) Identifying diversity in nanoscale electrical break junctions. J Am Chem Soc 132:9157–9164

    Article  CAS  Google Scholar 

  47. Li C, Stepanenko V, Lin M-J, Hong WJ, Würthner F, Wandlowski T (2013) Charge transport through perylene bisimide molecular junctions: An electrochemical approach. Phys Status Solidi B 250:2458–2467

    Article  CAS  Google Scholar 

  48. Yang Y, Liu JY, Feng S, Wen HM, Tian JH, Zheng JT, Schollhorn B, Amatore C, Chen ZN, Tian ZQ (2016) Unexpected current-voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted-MCBJ. Nano Res 9:560–570

    Article  CAS  Google Scholar 

  49. Yang Y, Chen ZB, Liu JY, Lu M, Yang DZ, Yang FZ, Tian ZQ (2011) An electrochemically assisted mechanically controllable break junction approach for single-molecule junction conductance measurements. Nano Res 4:1199–1207

    Article  CAS  Google Scholar 

  50. Zheng JT, Yan RW, Tian JH, Liu JY, Pei L, Wu DY, Dai K, Yang Y, Jin S, Hong W, Tian ZQ (2016) Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions. Electrochim Acta 200:268–275

    Article  CAS  Google Scholar 

  51. Kaliginedi V, Moreno-Garcia P, Valkenier H, Hong WJ, Garcia-Suarez VM, Buiter P, Otten JL, Hummelen JC, Lambert CJ, Wandlowski T (2012) Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J Am Chem Soc 134:5262–5275

    Article  CAS  Google Scholar 

  52. González MT, Leary E, Rl García, Verma P, Herranz MAN, Rubio-Bollinger G, Martín N, Agraït NS (2011) Break-junction experiments on acetyl-protected conjugated dithiols under different environmental conditions. J Phys Chem C 115:17973–17978

    Article  Google Scholar 

  53. Yamauchi Y, Yoshizawa M, Akita M, Fujita M (2010) Engineering double to quintuple stacks of a polarized aromatic in confined cavities. J Am Chem Soc 132:960–966

    Article  CAS  Google Scholar 

  54. Kiguchi M, Takahashi T, Takahashi Y, Yamauchi Y, Murase T, Fujita M, Tada T, Watanabe S (2011) Electron transport through single molecules comprising aromatic stacks enclosed in self-assembled cages. Angew Chem Int Ed 50:5708–5711

    Article  CAS  Google Scholar 

  55. Kiguchi M, Inatomi J, Takahashi Y, Tanaka R, Osuga T, Murase T, Fujita M, Tada T, Watanabe S (2013) Highly conductive [3 × n] gold-ion clusters enclosed within self-assembled cages. Angew Chem Int Ed Engl 52:6202–6205

    Article  CAS  Google Scholar 

  56. Fujii S, Tada T, Komoto Y, Osuga T, Murase T, Fujita M, Kiguchi M (2015) Rectifying electron-transport properties through stacks of aromatic molecules inserted into a self-assembled cage. J Am Chem Soc 137:5939–5947

    Article  CAS  Google Scholar 

  57. Kiguchi M, Nakashima S, Tada T, Watanabe S, Tsuda S, Tsuji Y, Terao J (2012) Single-molecule conductance of pi-conjugated rotaxane: New method for measuring stipulated electric conductance of pi-conjugated molecular wire using STM break junction. Small 8:726–730

    Article  CAS  Google Scholar 

  58. Anderson PW, Lee PA, Saitoh M (1973) Remarks on giant conductivity in TTF-TCNQ. Solid State Commun 13:595–598

    Article  CAS  Google Scholar 

  59. Alves H, Molinari AS, Xie H, Morpurgo AF (2008) Metallic conduction at organic charge-transfer interfaces. Nat Mater 7:574–580

    Article  CAS  Google Scholar 

  60. Garcia R, Angeles Herranz M, Leary E, Gonzalez MT, Rubio Bollinger G, Buerkle M, Zotti LA, Asai Y, Pauly F, Carlos Cuevas J, Agrait N, Martin N (2015) Single-molecule conductance of a chemically modified, Pi-extended tetrathiafulvalene and its charge-transfer complex with F(4)TCNQ. Beilstein J Org Chem 11:1068–1078

    Article  CAS  Google Scholar 

  61. Vezzoli A, Grace I, Brooke C, Wang K, Lambert CJ, Xu B, Nichols RJ, Higgins SJ (2015) Gating of single-molecule junction conductance by charge transfer complex formation. Nanoscale 7:18949–18955

    Article  CAS  Google Scholar 

  62. Nishino T, Ito T, Umezawa Y (2005) A fullerene molecular tip can detect localized and rectified electron tunneling within a single fullerene-porphyrin pair. PNAS 102:5659–5662

    Article  CAS  Google Scholar 

  63. Arima V, Blyth RIR, Della Sala F, Del Sole R, Matino F, Mele G, Vasapollo G, Cingolani R, Rinaldi R (2004) Long-range order induced by cobalt porphyrin adsorption on aminothiophenol-functionalized Au(111): The influence of the induced dipole. Mater Sci Eng C 24:569–573

    Article  Google Scholar 

  64. Xiao XY, Xu BQ, Tao NJ (2004) Conductance titration of single-peptide molecules. J Am Chem Soc 126:5370–5371

    Article  CAS  Google Scholar 

  65. Scullion L, Doneux T, Bouffier L, Fernig DG, Higgins SJ, Bethell D, Nichols RJ (2011) Large conductance changes in peptide single-molecule junctions controlled by pH. J Phys Chem C 115:8361–8368

    Article  CAS  Google Scholar 

  66. Nishino T (2010) Charge transport induced by formation of a single covalent bond. ChemPhysChem 11:3405–3407

    Article  CAS  Google Scholar 

  67. Wang L, Li SY, Yuan JH, Gu JY, Wang D, Wan LJ (2014) Electron transport characteristics of the dimeric 1,4-benzenedithiol junction. Chemistry Asian J 9:2077–2082

    Article  CAS  Google Scholar 

  68. Cheng ZL, Skouta R, Vazquez H, Widawsky JR, Schneebeli S, Chen W, Hybertsen MS, Breslow R, Venkataraman L (2011) In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat Nanotechnol 6:353–357

    Article  CAS  Google Scholar 

  69. Chen W, Widawsky JR, Vázquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L (2011) Highly conducting pi-conjugated molecular junctions covalently bonded to gold electrodes. J Am Chem Soc 133:17160–17163

    Article  CAS  Google Scholar 

  70. Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) Amine-linked single-molecule circuits: Systematic trends across molecular families. J Phys Condens Mat 20:374115

    Article  Google Scholar 

  71. Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Single-molecule circuits with well-defined molecular conductance. Nano Lett 6(3):458–462

    Article  CAS  Google Scholar 

  72. Gawronski J, Wascinska N, Gajewy J (2008) Recent progress in Lewis base activation and control of stereoselectivity in the additions of trimethylsilyl nucleophiles. Chem Rev 108:5227–5252

    Article  CAS  Google Scholar 

  73. Sangtarash S, Huang CC, Sadeghi H, Sorohhov G, Hauser J, Wandlowski T, Hong WJ, Decurtins S, Liu SX, Lambert CJ (2015) Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic. J Am Chem Soc 137:11425–11431

    Article  CAS  Google Scholar 

  74. Geng Y, Sangtarash S, Huang CC, Sadeghi H, Fu YC, Hong WJ, Wandlowski T, Decurtins S, Lambert CJ, Liu SX (2015) Magic ratios for connectivity-driven electrical conductance of graphene-like molecules. J Am Chem Soc 137:4469–4476

    Article  CAS  Google Scholar 

  75. Meir R, Chen H, Lai WZ, Shaik S (2010) Oriented electric fields accelerate Diels-Alder reactions and control the endo/exo selectivity. ChemPhysChem 11:301–310

    Article  CAS  Google Scholar 

  76. Haiss W, Wang CS, Grace I, Batsanov AS, Schiffrin DJ, Higgins SJ, Bryce MR, Lambert CJ, Nichols RJ (2006) Precision control of single-molecule electrical junctions. Nat Mater 5:995–1002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21673195, 21503179, 61573295, 21403181), Natural Science Foundation of Fujian Province (No. 2016J05162), Young Thousand Talent Project of China, and the Fundamental Research Funds for the Central Universities (Xiamen University: Nos. 20720170035, 20720160092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang, Jia Shi or Wenjing Hong.

Additional information

This article is part of the Topical Collection “Molecular-Scale Electronics: Current Status and Perspective”: edited by Xuefeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, D., Tan, Z. et al. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions. Top Curr Chem (Z) 375, 42 (2017). https://doi.org/10.1007/s41061-017-0123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0123-x

Keywords

Navigation