Skip to main content
Log in

Synthesis of Lactones and Other Heterocycles

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Chemical fixation of CO2 into value-added chemicals represents a promising field in view of sustainable development and green synthesis. In this aspect, the construction of heterocyclic compounds from CO2 and readily available starting materials is particularly appealing in both organic and pharmaceutical fields since CO2 can be regarded as carbon and oxygen resource with advantages of abundance, renewability, non-toxicity, and non-flammability. In this chapter, we have summarized elegant protocols with elaborately designed substrates for the direct incorporation of entire CO2 molecule or “CO” or “C” fragments into lactones and other heterocycles such as oxazolidinones, cyclic carbonates, quinazoline-2,4(1H,3H)-diones, etc., through the formation of carbon–carbon, carbon–nitrogen and/or carbon–oxygen bonds promoted by homogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35

Similar content being viewed by others

References

  1. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742

    Article  CAS  Google Scholar 

  2. He LN (2013) Carbon dioxide chemistry. Chinese Science Press, Beijing

    Google Scholar 

  3. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50:8510–8537

    Article  CAS  Google Scholar 

  4. He LN, Yang ZZ, Liu AH, Gao J (2010) CO2 chemistry at Nankai group: catalytic conversion of CO2 into value-added chemicals (2010) ACS series book “Advances in CO2 conversion and utilization”, Chapter 6. pp 77–101

  5. He LN, Wang JQ, Wang JL (2009) Carbon dioxide chemistry: examples and challenges in chemical utilization of carbon dioxide. Pure Appl Chem 81:2069–2080

    Article  CAS  Google Scholar 

  6. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  7. Yu B, He LN (2015) Upgrading Carbon dioxide by incorporation into heterocycles. Chem Sus Chem 8:52–62

    Article  CAS  Google Scholar 

  8. Yang Z-Z, He L-N, Gao J, Liu A-H, Yu B (2012) Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ Sci 5:6602–6639

    Article  CAS  Google Scholar 

  9. Wang JL, Miao CX, Dou XY, Gao J, He LN (2011) Carbon dioxide in heterocyclic synthesis. Curr Org Chem 15:621–646

    Article  CAS  Google Scholar 

  10. Liu Q, Wu L, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 2015(6):5933–5947

    Article  Google Scholar 

  11. Sasaki Y, Inoue Y, Hashimoto H (1979) Reaction of carbon dioxide with butadiene catalysed by palladium complexes. Synthesis of 2-ethylidenehept-5-en-4-olide. J Chem Soc Chem Commun 1979:605–606

    Google Scholar 

  12. Inoue Y, Sasaki Y, Hashimoto H (1978) Incorporation of CO2 in butadiene dimerization catalyzed by palladium complexes. Formation of 2-ethylidene-5-hepten-4-olide. Bull Chem Soc Jpn 51:2375–2378

    Article  CAS  Google Scholar 

  13. Braunstein P, Matt D, Nobel D (1988) Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and carbon dioxide. J Am Chem Soc 110:3207–3212

    Article  CAS  Google Scholar 

  14. Tsuda T, Morikawa S, Sumiya R, Saegusa T (1988) Nickel(0)-catalyzed cycloaddition of diynes and carbon dioxide to give bicyclic α-pyrones. J Org Chem 53:3140–3145

    Article  CAS  Google Scholar 

  15. Tsuda T, Morikawa S, Sumiya R (1989) Functionalized phosphine ligands in transition metal-catalysed organic synthesis. Nickel(0)-catalysed cycloaddition of terminally unsubstituted diynes and carbon dioxide to bicyclic 2-pyrones. J Chem Soc Chem Commun 1989:9–10

    Article  Google Scholar 

  16. Tsuda T, Morikawa S, Hasegawa N, Sumiya R (1990) Nickel(0)-catalyzed cycloaddition of silyl diynes with carbon dioxide to silyl bicyclic α-pyrones. J Org Chem 55:2978–2981

    Article  CAS  Google Scholar 

  17. Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2+2+2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189

    Article  CAS  Google Scholar 

  18. Takimoto M, Kawamura M, Mori M (2003) Nickel(0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes. Org Lett 5:2599–2601

    Article  CAS  Google Scholar 

  19. Inoue Y, Hibi T, Satake M, Hashimoto H (1979) Reaction of methylenecyclopropanes with carbon dioxide catalysed by palladium(0) complexes. Synthesis of five-membered lactones. J Chem Soc Chem Commun 1979:982–982

    Article  Google Scholar 

  20. Binger P, Weintz H-J (1984) Palladium(0)-catalyzed preparation of γ-lactone from methylenecyclopropanes and carbon dioxide. Eur J Inorg Chem 117:654–665

    Article  CAS  Google Scholar 

  21. Greco GE, Gleason BL, Lowery TA, Kier MJ, Hollander LB, Gibbs SA, Worthy AD (2007) Palladium-catalyzed [3 + 2] cycloaddition of carbon dioxide and trimethylenemethane under mild conditions. Org Lett 9:3817–3820

    Article  CAS  Google Scholar 

  22. Kikuchi S, Sekine K, Ishida T, Yamada T (2012) C–C bond formation with carbon dioxide promoted by a silver catalyst. Angew Chem Int Ed 51:6989–6992

    Article  CAS  Google Scholar 

  23. Xin Z, Lescot C, Friis SD, Daasbjerg K, Skrydstrup T (2015) Organocatalyzed CO2 trapping using alkynyl indoles. Angew Chem Int Ed 54:6862–6866

    Article  CAS  Google Scholar 

  24. Sekine K, Sadamitsu Y, Yamada T (2015) Silvercatalyzed cascade carboxylation and cyclization of trimethyl(2-methylenebut-3-yn-1-yl)silane derivatives. Org Lett 17:5706–5709

    Article  CAS  Google Scholar 

  25. Yoo WJ, Nguyen TVQ, Kobayashi S (2014) Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex. Angew Chem Int Ed 53:10213–10217

    Article  CAS  Google Scholar 

  26. Sasano K, Takaya J, Iwasawa N (2013) Palladium(II)-catalyzed direct carboxylation of alkenyl C–H bonds with CO2. J Am Chem Soc 135:10954–10957

    Article  CAS  Google Scholar 

  27. Zhang WZ, Yang MW, Lu XB (2016) Carboxylative cyclization of substituted propenyl ketones using CO2: transition-metal-free synthesis of α-pyrones. Green Chem 18:4181–4184

    Article  CAS  Google Scholar 

  28. Costa M, Chiusoli GP, Rizzardi M (1996) Base-catalysed direct introduction of carbon dioxide into acetylenic amines. Chem Commun 1699–1700

  29. Takeda Y, Okumura S, Tone S, Sasaki I, Minakata S (2012) Cyclizative atmospheric CO2 fixation by unsaturated amines with t-BuOI leading to cyclic carbamates. Org Lett 14:4874–4877

    Article  CAS  Google Scholar 

  30. Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B (2015) Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. Angew Chem Int Ed 54:5399–5403

    Article  CAS  Google Scholar 

  31. Mitsudo T, Hori Y, Yamakawa Y, Watanabe Y (1987) Ruthenium catalyzed selective synthesis of enol carbamates by fixation of carbon dioxide. Tetrahedron Lett 28:4417–4418

    Article  CAS  Google Scholar 

  32. Shi M, Shen YM (2002) Transition-metal-catalyzed reactions of propargylamine with carbon dioxide and carbon disulfide. J Org Chem 67:16–21

    Article  CAS  Google Scholar 

  33. Yoshida S, Fukui K, Kikuchi S, Yamada T (2009) Silver-catalyzed preparation of oxazolidinones from carbon dioxide and propargylic amines. Chem Lett 38:786–787

    Article  CAS  Google Scholar 

  34. Hase S, Kayaki Y, Ikariya T (2013) NHC–gold(I) complexes as effective catalysts for the carboxylative cyclization of propargylamines with carbon dioxide. Organometallics 32:5285–5288

    Article  CAS  Google Scholar 

  35. Yoshida M, Mizuguchi T, Shishido K (2012) Synthesis of oxazolidinones by efficient fixation of atmospheric CO2 with propargylic amines by using a silver/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) dual-catalyst system. Chem Eur J 18:15578–15581

    Article  CAS  Google Scholar 

  36. Wang M-Y, Song Q-W, Ma R, Xie J-N, He L-N (2016) Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(II)-substituted polyoxometalate-based ionic liquids. Green Chem 18:282–287

    Article  Google Scholar 

  37. Liu X, Wang M-Y, Wang S-Y, Wang Q, He L-N (2016) In situ generated zinc(II) catalyst for incorporation of CO2 into 2-oxazolidinones with propargylic amines at atmospheric pressure. ChemSusChem. doi:10.1002/cssc.201601469

    Google Scholar 

  38. Kayaki Y, Mori N, Ikariya T (2009) Palladium-catalyzed carboxylative cyclization of α-allenyl amines in dense carbon dioxide. Tetrahedron Lett 50:6491–6493

    Article  CAS  Google Scholar 

  39. Li S, Ye J, Yuan W, Ma S (2013) Highly regioselective three-component palladium-catalyzed synthesis of 5-vinyloxazolidin-2-ones from 2,3-allenyl amines, organic iodides, and carbon dioxide. Tetrahedron 69:10450–10456

    Article  CAS  Google Scholar 

  40. Yamashita K, Hase S, Kayaki Y, Ikariya T (2015) Highly selective carboxylative cyclization of allenylmethylamines with carbon dioxide using N-heterocyclic carbene-silver(I) catalysts. Org Lett 17:2334–2337

    Article  CAS  Google Scholar 

  41. Yoo WJ, Li CJ (2008) Copper-catalyzed four-component coupling between aldehydes, amines, alkynes and carbon dioxide. Adv Synth Catal 350:1503–1506

    Article  CAS  Google Scholar 

  42. Ishida T, Kikuchi S, Tsubo T, Yamada T (2013) Silver-catalyzed incorporation of carbon dioxide into o-alkynylaniline derivatives. Org Lett 15:848–851

    Article  CAS  Google Scholar 

  43. Ishida T, Kikuchi S, Yamada T (2013) Efficient preparation of 4-hydroxyquinolin-2(1H)-one derivatives with silver-catalyzed carbon dioxide incorporation and intramolecular rearrangement. Org Lett 15:3710–3713

    Article  CAS  Google Scholar 

  44. Zhang Z, Liao L-L, Yan S-S, Wang L, He Y-Q, Ye J-H, Li J, Zhi Y-G, Yu D-G (2016) Lactamization of sp2 C–H bonds with CO2: transition-metal-free and redox-neutral. Angew Chem Int Ed 55:7068–7072

    Article  CAS  Google Scholar 

  45. Wang S, Shao P, Du G, Xi C (2016) MeOTf- and TBD-Mediated carbonylation of ortho-arylanilines with CO2 leading to phenanthridinones. J Org Chem 81:6672–6676

    Article  CAS  Google Scholar 

  46. Patil YP, Tambade PJ, Jagtap SR, Bhanage BM (2008) Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1H,3H)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chem Lett Rev 1:127–132

    Article  CAS  Google Scholar 

  47. Mizuno T, Okamoto N, Ito T, Miyata T (2000) Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett 41:1051–1053

    Article  CAS  Google Scholar 

  48. Gao J, He L-N, Miao C-X, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H,3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067

    Article  CAS  Google Scholar 

  49. Nagai D, Endo T (2009) Synthesis of 1H-quinazoline-2,4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci Part A: Polym Chem 47:653–657

    Article  CAS  Google Scholar 

  50. Kimura T, Kamata K, Mizuno N (2012) A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51:6700–6703

    Article  CAS  Google Scholar 

  51. Kimura T, Sunaba H, Kamata K, Mizuno N (2012) Efficient [WO4]2−-catalyzed chemical fixation of carbon dioxide with 2-aminobenzonitriles to quinazoline-2,4(1H,3H)-diones. Inorg Chem 51:13001–13008

    Article  CAS  Google Scholar 

  52. Patil YP, Tambade PJ, Deshmukh KM, Bhanage BM (2009) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catal Today 148:355–360

    Article  CAS  Google Scholar 

  53. Lu W, Ma J, Hu J, Song J, Zhang Z, Yang G, Han B (2014) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chem 16:221–225

    Article  CAS  Google Scholar 

  54. Zheng H, Cao X, Du K, Xu J, Zhang P (2014) A highly efficient way to capture CX2 (O, S) mildly in reusable ReILs at atmospheric pressure. Green Chem 16:3142–3148

    Article  CAS  Google Scholar 

  55. Zhao Y, Yu B, Yang Z, Zhang H, Hao L, Gao X, Liu Z (2014) A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4(1H,3H)-diones. Angew Chem Int Ed 53:5922–5925

    Article  CAS  Google Scholar 

  56. Ma J, Han B, Song J, Hu J, Lu W, Yang D, Zhang Z, Jiang T, Hou M (2013) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chem 15:1485–1489

    Article  CAS  Google Scholar 

  57. Ma J, Hu J, Lu W, Zhang Z, Han B (2013) Theoretical study on the reaction of CO2 and 2-aminobenzonitrile to form quinazoline-2,4(1H,3H)-dione in water without any catalyst. Phys Chem Chem Phys 15:17333–17341

    Article  CAS  Google Scholar 

  58. Kamata K, Kimura T, Sunaba H, Mizuno N (2014) Scope of chemical fixation of carbon dioxide catalyzed by a bifunctional monomeric tungstate. Catal Today 226:160–166

    Article  CAS  Google Scholar 

  59. Yu B, Zhang H, Zhao Y, Chen S, Xu J, Hao L, Liu Z (2013) DBU-based ionic-liquid-catalyzed carbonylation of o-phenylenediamines with CO2 to 2-benzimidazolones under solvent-free conditions. ACS Catal 3:2076–2082

    Article  CAS  Google Scholar 

  60. Kayaki Y, Yamamoto M, Ikariya T (2007) Stereoselective formation of α-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide. J Org Chem 72:647–649

    Article  CAS  Google Scholar 

  61. Cà ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M (2011) Effective guanidine-catalyzed synthesis of carbonate and carbamate derivatives from propargyl alcohols in supercritical carbon dioxide. Adv Synth Catal 353:133–146

    Article  Google Scholar 

  62. Kayaki Y, Yamamoto M, Ikariya T (2009) N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew Chem Int Ed 48:4194–4197

    Article  CAS  Google Scholar 

  63. Wang YB, Wang YM, Zhang WZ, Lu XB (2013) Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J Am Chem Soc 135:11996–12003

    Article  CAS  Google Scholar 

  64. Wang Y-B, Sun D-S, Zhou H, Zhang W-Z, Lu X-B (2014) Alkoxide-functionalized imidazolium betaines for CO2 activation and catalytic transformation. Green Chem 16:2266–2272

    Article  Google Scholar 

  65. Inoue Y, Ishikawa J, Taniguchi M, Hashimoto H (1987) Cobalt-catalyzed reaction of carbon dioxide with propargyl alcohol. Bull Chem Soc Jpn 60:1204–1206

    Article  CAS  Google Scholar 

  66. Kim T-J, Kwon K-H, Kwon S-C, Baeg J-O, Shim S-C, Lee D-H (1990) Iron complexes of 1,1-bis(diphenylphosphino)ferrocene (BPPF) as efficient catalysts in the synthesis of carbamates. X-ray crystal structure of (BPPF)Fe(CO)3. J Organomet Chem 389:205–217

    Article  CAS  Google Scholar 

  67. Gu Y, Shi F, Deng Y (2004) Ionic liquid as an efficient promoting medium for fixation of CO2: clean synthesis of α-methylene cyclic carbonates from CO2 and propargyl alcohols catalyzed by metal salts under mild conditions. J Org Chem 69:391–394

    Article  CAS  Google Scholar 

  68. Ouyang L, Tang X, He H, Qi C, Xiong W, Ren Y, Jiang H (2015) Copper-promoted coupling of carbon dioxide and propargylic alcohols: expansion of substrate scope and trapping of vinyl copper intermediate. Adv Synth Catal 357:2556–2565

    Article  CAS  Google Scholar 

  69. Iritani K, Yanagihara N, Utimoto K (1986) Carboxylative coupling of propargylic alcohols with allyl chloride. J Org Chem 51:5499–5501

    Article  CAS  Google Scholar 

  70. Yamada W, Sugawara Y, Cheng HM, Ikeno T, Yamada T (2007) Silver-catalyzed incorporation of carbon dioxide into propargylic alcohols. Eur J Org Chem 2007:2604–2607

    Article  Google Scholar 

  71. Song QW, Yu B, Li XD, Ma R, Diao ZF, Li RG, Li W, He LN (2014) Efficient chemical fixation of CO2 promoted by a bifunctional Ag2WO4/Ph3P system. Green Chem 16:1633–1638

    Article  CAS  Google Scholar 

  72. Song QW, Chen WQ, Ma R, Yu A, Li QY, Chang Y, He LN (2015) Bifunctional silver(I) complex-catalyzed CO2 conversion at ambient conditions: synthesis of α-methylene cyclic carbonates and derivatives. ChemSusChem 8:821–827

    Article  CAS  Google Scholar 

  73. Yoshida S, Fukui K, Kikuchi S, Yamada T (2010) Silver-catalyzed enantioselective carbon dioxide incorporation into bispropargylic alcohols. J Am Chem Soc 132:4072–4073

    Article  CAS  Google Scholar 

  74. Song QW, He LN (2016) Robust silver(I) catalyst for the carboxylative cyclization of propargylic alcohols with carbon dioxide under ambient conditions. Adv Synth Catal 358:1251–1258

    Article  CAS  Google Scholar 

  75. Yamada T, Ugajin R, Kikuchi S (2014) Silver-catalyzed efficient synthesis of vinylene carbonate derivatives from carbon dioxide. Synlett 25:1178–1180

    Article  Google Scholar 

  76. Hu J, Ma J, Zhu Q, Qian Q, Han H, Mei Q, Han B (2016) Zinc(II)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature. Green Chem 18:382–385

    Article  CAS  Google Scholar 

  77. Uemura K, Kawaguchi T, Takayama H, Nakamura A, Inoue Y (1999) Preparation of alkylidene cyclic carbonates via cyclization of propargylic carbonates. J Mol Catal A Chem 139:1–9

    Article  CAS  Google Scholar 

  78. Minakata S, Sasaki I, Ide T (2010) Atmospheric CO2 fixation by unsaturated alcohols using tBuOI under neutral conditions. Angew Chem Int Ed 49:1309–1311

    Article  CAS  Google Scholar 

  79. Vara BA, Struble TJ, Wang W, Dobish MC, Johnston J (2015) Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst. J Am Chem Soc 137:7302–7305

    Article  CAS  Google Scholar 

  80. Qi C, Jiang H, Huang L, Yuan G, Ren Y (2011) Carbon dioxide triggered and copper-catalyzed domino reaction: efficient construction of highly substituted 3(2H)-furanones from nitriles and propargylic alcohols. Org Lett 13:5520–5523

    Article  CAS  Google Scholar 

  81. Yoshida M, Fujita M, Ishii T, Ihara M (2003) A novel methodology for the synthesis of cyclic carbonates based on the palladium-catalyzed cascade reaction of 4-methoxycarbonyloxy-2-butyn-1-ols with phenols, involving a novel carbon dioxide elimination-fixation process. J Am Chem Soc 125:4874–4881

    Article  CAS  Google Scholar 

  82. Li YN, He LN, Lang XD, Liu XF, Zhang S (2014) An integrated process of CO2 capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system. RSC Adv 4:49995–50002

    Article  CAS  Google Scholar 

  83. Liu AH, Ma R, Song C, Yang ZZ, Yu A, Cai Y, He LN, Zhao YN, Yu B, Song QW (2012) Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angew Chem Int Ed 51:11306–11310

    Article  CAS  Google Scholar 

  84. Song QW, Zhou ZH, Yin H, He LN (2015) Silver(I)-catalyzed synthesis of β-oxopropylcarbamates from propargylic alcohols and CO2 surrogate: a gas-free process. ChemSusChem 8:3967–3972

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National key research and development project (2016YFA0602900), the National Natural Science Foundation of China, the Natural Science Foundation of Tianjin Municipality (16JCZDJC39900), Specialized Research Fund for the Doctoral Program of Higher Education (project 20130031110013), and MOE Innovation Team (IRT13022) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He.

Additional information

This article is part of the Topical Collection “Chemical Transformations of Carbon Dioxide”; edited by “Xiao-Feng Wu, Matthias Beller”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., He, LN. Synthesis of Lactones and Other Heterocycles. Top Curr Chem (Z) 375, 21 (2017). https://doi.org/10.1007/s41061-017-0108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0108-9

Keywords

Navigation