Skip to main content
Log in

Influence of different bacterial strains on cracks self-healing in cement-based matrices with and without incorporated air

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

Biological self-healing occurs by metabolically calcium carbonate (CaCO3) precipitating bacteria. However, the cementitious matrix is hostile, and it is necessary to create a favorable environment for the prolonged viability of the bacteria. In this context, this study aimed to evaluate the efficiency of three bacterial strains in the self-healing of cracks (Bacillus subtilis—AP91, Bacillus cf. subtilis—BS, and Bacillus cf. cereus—BC) incorporated into the mixing water of cementitious mortars with and without air admixture. After 1 and 7 days of curing, realistic cracks were induced in the 40 × 40 × 160 mm prismatic specimens’ central region. Compressive strength and flexural tensile strength tests and image analysis in optical stereomicroscope and SEM were performed at different control ages for specimens in wet curing. It was verified that the bacterial strain influences the self-healing performance, with better results for BS, with healing rates of 95.72% in cracks with a thickness of 1.58 mm. Incorporating air into the mixture proved favorable to self-healing, with rates up to 126% higher than the same variation without the additive. The studied process is a promising biotechnological solution for recovering micro-cracks in cement-based materials, potentially increasing the matrix’s durability and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be made available upon request to the authors.

References

  1. Felix EF, Balabuch TJR, Posterlli MC, Possan E, Carrazedo R (2018) Service life analysis of reinforced concrete structure under uniform corrosion through ANN model coupled to the FEM. Revista ALCONPAT 8(1):1–15. https://doi.org/10.21041/ra.v8i1.256

  2. Jonkers D (2011) Wise crack. Engineer 11-APRIL:28–29

    Google Scholar 

  3. Van Tittelboom K, De Belie N (2013) Self-healing in cementitious materials—a review. Materials 6:2182–2217. https://doi.org/10.3390/ma6062182

    Article  Google Scholar 

  4. Cappellesso VG, Van Mullem T, Gruyaert E, Van Tittelboom K, De Belie N (2023) Bacteria-based self-healing concrete exposed to frost salt scaling. Cement Concr Compos 105016. https://doi.org/10.1016/j.cemconcomp.2023.105016

  5. Jonkers HM (2011) Bacteria-based self-healing concrete. Heron 56:1–12

    Google Scholar 

  6. Schwantes-Cezario N, Nogueira GSF, Toralles BM (2017) Biocimentação de compósitos cimentícios mediante adição de esporos de Bacillus subtilis AP91. Revista de Engenharia Civil IMED 4:142–158. https://doi.org/10.18256/2358-6508.2017.v4i2.2072

    Article  Google Scholar 

  7. Wiktor V, Jonkers HM (2011) Un nouveau béton auto-cicatrisant grâce à l’incorporation de bactéries. Matériaux Tech 99:565–571. https://doi.org/10.1051/mattech/2011110

    Article  Google Scholar 

  8. De Rooij M, Van Tittelboom K, de Belie N, Schlangen E (2013) RILEM TC 221-SHC: self-healing phenomena in cement-based materials. Springer, Netherlands

    Book  Google Scholar 

  9. Jonkers HM, Thijssen A, Muyzer G et al (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  10. De Belie N, De Muynck W (2009) Crack repair in concrete using biodeposition. Concrete Repair, Rehabilitation and Retrofitting II—Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR 2:291–292. https://doi.org/10.1201/9781439828403.ch107

  11. Van TK, De BN, De MW, Verstraete W (2010) Cement and concrete research use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166. https://doi.org/10.1016/j.cemconres.2009.08.025

    Article  Google Scholar 

  12. Jonkers HM, Thijssen A (2010) Bacteria Mediated of Concrete Strutures. 2nd International Symposium on Service Life Design for Infrastructure 4–6 October 2010, Delft, The Netherlands 833–840

  13. Ghellere P (2021) Seleção e avaliação de bactérias produtoras de CaCO3 na recuperação de fissuras dos materiais a base de cimento. (Dissertação) Programa de Pós-Graduação em Engenharia Civil. Universidade Federal da Integração Latino Americana, pp 1–115. https://dspace.unila.edu.br/handle/123456789/6446

  14. Schwantes-Cezario N, Peres MVNDN, Fruet TK et al (2018) Crack filling in concrete by addition of bacillus subtilis spores—preliminary study. DYNA (Colombia) 85:132–139. https://doi.org/10.15446/dyna.v85n205.68591

    Article  Google Scholar 

  15. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98(1):3–9. https://doi.org/10.14359/10154

  16. Luo M, Qian CXC-X, Li RYR-Y (2015) Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr Build Mater 87:1–7. https://doi.org/10.1016/j.conbuildmat.2015.03.117

    Article  Google Scholar 

  17. Pacheco F (2020) Análise da eficácia dos mecanismos de autorregeneração e autocicatrização do concreto. (Tese) Programa de Pós-Graduação em Engenharia Civil. Universidade do Vale do Rio dos Sinos UNISINOS, São Leopoldo. http://www.repositorio.jesuita.org.br/handle/UNISINOS/9376

  18. Wiktor V, Jonkers HMHMHM (2011) Cement & concrete composites quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concr Compos 33:763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012

    Article  Google Scholar 

  19. Cappellesso VG (2018) Avaliação da autocicatrização de fissuras em concretos com diferentes cimentos. Dissertação de Mestrado. Universidade Federal Do Rio Grande Do Sul Escola de Engenharia Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura

  20. Associação Brasileira de Normas Técnicas (2005) NBR 13279 Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Associação Brasileira de Normas Técnicas, pp 1–9

  21. Sahmaran M, Yildirim G, Erdem T K (2013) Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement Concr Compos 35(1):89–101. https://doi.org/10.1016/j.cemconcomp.2012.08.013

  22. Gagné R, Argouges M (2012) A study of the natural self-healing of mortars using air-flow measurements. Mater Struct/Materiaux et Constr 45:1625–1638. https://doi.org/10.1617/s11527-012-9861-y

    Article  Google Scholar 

  23. Xu H, Lian J, Gao M et al (2019) Self-healing concrete using rubber particles to immobilize bacterial spores. Materials. https://doi.org/10.3390/ma12142313

    Article  Google Scholar 

  24. Sidiq A, Gravina R, Giustozzi F (2019) Is concrete healing really efficient? A review. Constr Build Mater 205:257–273. https://doi.org/10.1016/j.conbuildmat.2019.02.002

    Article  Google Scholar 

  25. Ferrara L, Asensio EC, Monte FL et al (2018) Experimental characterization of the self-healing capacity of cement based materials: an overview. Proceeding. https://doi.org/10.3390/icem18-05322

    Article  Google Scholar 

  26. Hilloulin B, Legland JB, Lys E et al (2016) Monitoring of autogenous crack healing in cementitious materials by the nonlinear modulation of ultrasonic coda waves, 3D microscopy and X-ray microtomography. Constr Build Mater 123:143–152. https://doi.org/10.1016/j.conbuildmat.2016.06.138

    Article  Google Scholar 

  27. Roig-Flores M, Pirritano F, Serna P, Ferrara L (2016) Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr Build Mater 114:447–457. https://doi.org/10.1016/j.conbuildmat.2016.03.196

    Article  Google Scholar 

  28. Schwantes N (2017) Desempenho de Bacillus sp. na biocimentação de materiais cimentícios (Dissertação). Programa de Pós-Graduação em Edificações e Saneamento. Universidade Estadual de Londrina. http://www.bibliotecadigital.uel.br/document/?code=vtls000211479

  29. Chen B, Sun W, Sun X et al (2021) Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: influence of bacterial concentration and air-entraining agent. Process Biochem 107:100–111. https://doi.org/10.1016/j.procbio.2021.05.001

    Article  Google Scholar 

  30. Justo-Reinoso I, Reeksting BJ, Hamley-Bennett C et al (2022) Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites: healing evaluation of early and later-age cracks. Constr Build Mater 327:126877. https://doi.org/10.1016/j.conbuildmat.2022.126877

    Article  Google Scholar 

  31. Hollmann CF (2020) Avaliação da influência de aditivos cristalizantes na resistência à penetração de íons cloreto em concretos fissurados (Dissertação) Programa de Pós-Graduação em Engenharia Civil: construção e infraestrutura. Universidade Federal do Rio Grande do Sul, Rio Grande do Sul

    Google Scholar 

  32. Possan E, Molin DCCD, Andrade JJO (2018) A conceptual framework for service life prediction of reinforced concrete structures. J Build Pathol Rehabilit. https://doi.org/10.1007/s41024-018-0031-7

    Article  Google Scholar 

Download references

Acknowledgements

To Araucária Foundation and PRPPG for funding the research and to the Performance, Structures, and Materials Laboratory (LADEMA) and Environmental Biotechnology Laboratory for research support.

Funding

Universidade Federal da Integração Latino Americana and, Fundação Araucária [Convênio P&DI No 104/2022 PDI].

Author information

Authors and Affiliations

Authors

Contributions

SKL: experimental work and data collection, Discussion of results, writing-original draft preparation. EP: funding acquisition; Conceptualization, Supervision, Methodology, writing reviewing, and editing. MRZP: supervision, methodology, discussion of results, supervision, writing reviewing, and editing. PG: collection and isolation of bacterial strains.

Corresponding author

Correspondence to Edna Possan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, S.K., Possan, E., Passarini, M.R.Z. et al. Influence of different bacterial strains on cracks self-healing in cement-based matrices with and without incorporated air. J Build Rehabil 8, 61 (2023). https://doi.org/10.1007/s41024-023-00312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-023-00312-3

Keywords

Navigation