Skip to main content

Advertisement

Log in

Evaluation of service-life prediction model for reinforced concrete structures in chloride-laden environments

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

Reinforced concrete structures are subjected to several degradation processes that often occur early, especially due to reinforcements corrosion. Therefore, the use of representative models for an accurate service-life prediction of reinforced concrete structures becomes indispensable. Thus, this study is aimed at evaluating the model proposed by Andrade to efficiently predict the chloride penetration in concrete structures. In addition, the input variables of this model, as well as the challenges in obtaining them are analyzed. Andrade’s model was applied in some case studies to verify their efficiency in predicting the chloride penetration in reinforced concrete structures in marine environments. The results indicate that for data with small exposure times, the model yielded similar responses to the chloride penetration in situ, with good results within an error range of 35%, associated with a maximum difference of only 4.6 mm between observed and calculated values. For the data with higher exposure times, the differences were significant, indicating the need for an alteration in order to best determine the increase in surface chloride concentration over time. Thus, it is suggested that the model undergoes modifications, mainly in relation to two fundamental aspects, (i) adopt the growth of the chloride surface concentration over time and (ii) consider the variability of the concrete characteristics and exposure conditions through a probabilistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Possan, Dal Molin, and Andrade [39]

Fig. 2

Source: Meira [52], elaborated by the authors

Similar content being viewed by others

References

  1. Shi X, Xie N, Fortune K, Gong J (2012) Durability of steel reinforced concrete in chloride environments: an overview. Constr Build Mater 30:125–138. https://doi.org/10.1016/j.conbuildmat.2011.12.038

    Article  Google Scholar 

  2. American Concrete Institute (2016) Manual of concrete practice

  3. Apostolopoulos CA, Papadakis VG (2008) Consequences of steel corrosion on the ductility properties of reinforcement bar. Constr Build Mater 22(12):2316–2324. https://doi.org/10.1016/j.conbuildmat.2007.10.006

    Article  Google Scholar 

  4. Mehta PK, Monteiro PJ (2014) Concrete: microstructures, properties, and materials. McGraw-Hill, New York

    Google Scholar 

  5. Ueda T, Takewaka K (2007) Performance-based Standard Specifications for maintenance and Repair of concrete structures in Japan. Struct Eng Int 4:359–366. https://doi.org/10.2749/101686607782359119

    Article  Google Scholar 

  6. Gerhardus MPH, Koch H, Brongers NG (2002) Corrosion costs and preventive strategies in the United States. Summ. Shute. Inst., pp 1–12

  7. Fédération Internationale du Béton (2006) Boletim FIB 34

  8. European Committee for Standardization (2005) EN 1990:2002/A1:2005: Eurocode—basis of structural design

  9. Australian Standard (2005) AS 4997—guidelines for the design of maritime structures

  10. Associação Brasileira de Normas Técnicas (2013) NBR 15575-1: Edificações habitacionais—Desempenho. Parte 1: Requisitos gerais

  11. Milani CJ, Kripka M (2012) Diagnosis of pathologies in bridges of the road system in Brazil. Constr J 13(1):26–34

    Google Scholar 

  12. Muthulingam BN, Rao S (2015) Consistent models for estimating chloride ingress parameters in fly ash concrete. J Build Eng 3:24–38. https://doi.org/10.1016/j.jobe.2015.04.009

    Article  Google Scholar 

  13. Pintan NM, Just A, Maria C, Silva M (2015) Pathological manifestations and the study of corrosion present on bridges of the city of Recife. EJGE 20:11893–11907

    Google Scholar 

  14. Weerdt K, Orsáková D, Müller ACA, Larsen CK, Pedersen B, Geiker MR (2016) Towards the understanding of chloride profiles in marine exposed concrete, impact of leaching and moisture content. Constr Build Mater 120:418–431. https://doi.org/10.1016/j.conbuildmat.2016.05.069

    Article  Google Scholar 

  15. Ribeiro DV (2014) Corrosão em estruturas de concreto armado: Teoria, Controle e Métodos de Análise

  16. Shodja HM, Kiani K, Hashemian A (2010) A model for the evolution of concrete deterioration due to reinforcement corrosion. Math Comput Model 52(9–10):1403–1422. https://doi.org/10.1016/j.mcm.2010.05.023

    Article  MathSciNet  MATH  Google Scholar 

  17. IBGE (2019) Sobre o Brasil—Posição e Extensão

  18. Torres-Acosta AA, Navarro-Gutierrez N, Terán-Guillén J (2007) Residual flexure capacity of corroded reinforced concrete beams. Eng Struct 29(6):1145–1152. https://doi.org/10.1016/j.engstruct.2006.07.018

    Article  Google Scholar 

  19. Spiesz P, Brouwers HJH (2013) The apparent and effective chloride migration coef fi cients obtained in migration tests. Cem Concr Res 48:116–127. https://doi.org/10.1016/j.cemconres.2013.02.005

    Article  Google Scholar 

  20. Otieno M, Beushausen H, Alexander M (2014) Effect of chemical composition of slag on chloride penetration resistance of concrete. Cem Concr Compos 46:56–64. https://doi.org/10.1016/j.cemconcomp.2013.11.003

    Article  Google Scholar 

  21. Pruckner F, Gjørv OE (2004) Effect of CaCl2 and NaCl additions on concrete corrosivity. Cem Concr Res 34(7):1209–1217. https://doi.org/10.1016/j.cemconres.2003.12.015

    Article  Google Scholar 

  22. Xu J, Jiang L, Wang W, Jiang Y (2011) Influence of CaCl2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete. Constr Build Mater 25(2):663–669. https://doi.org/10.1016/j.conbuildmat.2010.07.023

    Article  Google Scholar 

  23. Liu J, Ba M, Du Y, He Z, Chen J (2016) Effects of chloride ions on carbonation rate of hardened cement paste by X-ray CT techniques. Constr Build Mater 122:619–627. https://doi.org/10.1016/j.conbuildmat.2016.06.101

    Article  Google Scholar 

  24. Chalee W, Jaturapitakkul C, Chindaprasirt PP (2009) Predicting the chloride penetration of fly ash concrete in seawater. Mar Struct 22(3):341–353. https://doi.org/10.1016/j.marstruc.2008.12.001

    Article  Google Scholar 

  25. Valipour M, Pargar F, Shekarchi M, Khani S, Moradian M (2013) In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment. Constr Build Mater 46:63–70

    Article  Google Scholar 

  26. Dasar A, Hamada H, Sagawa Y, Yamamoto D (2017) Deterioration progress and performance reduction 40-year-old reinforced concrete beams in natural corrosion environments. Constr Build Mater 149:690–704. https://doi.org/10.1016/j.conbuildmat.2017.05.162

    Article  Google Scholar 

  27. Maric MK, Ozbolt J, Balabanic G, Ivankovic AM, Zaric D (2017) Service life prediction of concrete structures in maritime environment—case study: Maslenica motorway bridge. In: Construction materials for sustainable future, pp 0–10

  28. Tuutti K (1982) Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute

  29. Uji T, Matsuoka K, Maruya Y (1990) Formulation of an equation for surface chloride content of concrete due to permeation of chloride. In 3rd Int. Symp. on Corrosion of Reinforced Concrete, Society of Chemical Industry, pp 258–267

  30. Tang LO, Nilsson A (1996) A numerical method for prediction of chloride penetration into concrete structures. In: The modelling of microestruture and it’s potential for studying transport properties and durability, pp 539–552

    Chapter  Google Scholar 

  31. Bob C (1996) Probabilistic assessment of reinforcement corrosion in existing structures. In: Concrete repair, rehabilitation and protection, pp 17–28

  32. Sugiyama T, Ritthichauy W, Tsuji Y (2008) Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete. Cem Concr Res 38:49–67. https://doi.org/10.1016/j.cemconres.2007.08.027

    Article  Google Scholar 

  33. Andrade C, Andréa RD, Castillo A, Castellote M (2009) The use of electrical resistivity as NDT method for the specification of the durability of reinforced concrete. Civ Eng 3–8

  34. Mazer W (2010) Metodologia para a previsão da penetração de íons cloreto em estruturas de concreto armado utilizado lógica difusa. Instituto Técnico de Aeronaútica

  35. Marsavina L, Audenaert K, Schutter G, Faur N, Marsavina D (2009) Experimental and numerical determination of the chloride penetration in cracked concrete. Constr Build Mater 23(1):264–274. https://doi.org/10.1016/j.conbuildmat.2007.12.015

    Article  Google Scholar 

  36. Du X, Jin K, Ma G (2014) A meso-scale numerical method for the simulation of chloride diffusivity in concrete. Finite Elem Anal Des 85:87–100

    Article  Google Scholar 

  37. Andrade JJO (2001) Contribuição à previsão da vida útil das estruturas de concreto armado atacadas pela corrosão de armaduras: iniciação por cloretos. Universidade Federal do Rio Grande do Sul

  38. Andrade JJO, Possan E, Dal Molin DCC (2019) Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments. J Build Pathol Rehabil 2(1):6

    Article  Google Scholar 

  39. Possan E, Dal Molin DCC, Andrade JJO (2019) A conceptual framework for service life prediction of reinforced concrete structures. J Build Pathol Rehabil 3:2

    Article  Google Scholar 

  40. Silvestro L, Dal Molin DCC (2018) Avaliação de modelos para previsão de vida útil de estruturas de concreto armado localizadas em ambientes com cloretos. In: 6a Conferência sobre Patol. e Reabil. Edifícios

  41. Andrade C, Andrea R (2010) Electrical resistivity as microstructural parameter for modelling of service life of reinforced concrete structures. In: 2nd Int. Symp. Serv. Life Des. Infrastructure, Delft, Netherlands, no. October, pp 379–388

  42. Medeiros Junior RA (2011) Estudo da influência das mudanças climáticas na penetração de cloretos em estruturas de concreto localizadas em ambiente marinho. Instituto Tecnológico de Aeronáutica

  43. Crank J (195) The mathematics of diffusion

  44. Oh BH, Jang SY, Shin YS (2005) Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures. Mag Concr Res 55(2):117–124. https://doi.org/10.1680/macr.2003.55.2.117

    Article  Google Scholar 

  45. Yuan Q, Shi C, Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment—a review. Constr Build Mater 23(1):1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004

    Article  Google Scholar 

  46. Nielsen EP, Geiker MR (2003) Chloride diffusion in partially saturated cementitious material. Cem Concr Res 33:133–138

    Article  Google Scholar 

  47. Costa A, Appleton J (1999) Chloride penetration into concrete in marine environment—part I: main parameters affecting chloride penetration. Mater Struct 32:252–259

    Article  Google Scholar 

  48. Costa A, Appleton J (1999) Chloride penetration into concrete in marine environment—part II : prediction of long term chloride penetration. Mater Struct 32:354–359

    Article  Google Scholar 

  49. Costa A, Appleton J (2002) Case studies of concrete deterioration in a marine environment in Portugal. Cem Concr Compos 24(1):169–179

    Article  Google Scholar 

  50. Pereira ADC (2003) Estudio De Metodos Probabilisticos Para La Prediccion De La Vida Util De Estructuras De Hormigon: Influencia Del Factor Variabilidad Espacial En El Caso De Plataformas Offshore En Brasil. Universidad Politécnica de Madrid

  51. Brito PC (2008) Avaliação de durabilidade de uma plataforma offshore em concreto—Estudo de microclima em ambiente marinho. Instituto Tecnológico de Aeronáutica

  52. Meira GR (2004) Agressividade por cloretos em zona de atmosfera marinha frente ao problema da corrosão em estruturas de concreto armado. Universidade Federal de Santa Catarina

  53. Vitali MRV (2013) Efeito Do Distanciamento Ao Mar Da Contaminação Do Concreto Por Cloretos. Universidade Federal de Santa Catarina

  54. Boubitsas D, Luping T, Utgenannt P (2014) Chloride ingress in concrete exposed to marine environment—field data up to 20 years exposure. Report

  55. Wu L, Li W, Yu X (2017) Time-dependent chloride penetration in concrete in marine environments. Constr Build Mater 152:406–413. https://doi.org/10.1016/j.conbuildmat.2017.07.016

    Article  Google Scholar 

  56. Medeiros Junior RA, Lima MG, Brito PC, Medeiros MHF (2015) Chloride penetration into concrete in an offshore platform-analysis of exposure conditions. Ocean Eng 103:78–87. https://doi.org/10.1016/j.oceaneng.2015.04.079

    Article  Google Scholar 

  57. Chen YS, Chiu HJ, Chan YW, Chang YC, Yang CC (2013) The correlation between air-borne salt and chlorides cumulated on concrete surface in the marine atmosphere zone in North Taiwan. J Mar Sci Technol 21(1):24–34

    Google Scholar 

  58. Luping T (2003) Chloride ingress in concrete exposed to marine environment—field data up to 10 years exposure. Report

  59. Song HW, Lee CH, Ann KY (2008) Factors influencing chloride transport in concrete structures exposed to marine environments. Cem Concr Compos 30(2):113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Silvestro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestro, L., Andrade, J.J.O. & Dal Molin, D.C.C. Evaluation of service-life prediction model for reinforced concrete structures in chloride-laden environments. J Build Rehabil 4, 20 (2019). https://doi.org/10.1007/s41024-019-0059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-019-0059-3

Keywords

Navigation