Skip to main content
Log in

Numerical and Experimental Investigation on Cyclic Behavior of Masonry Infill Walls Retrofitted with CFRP

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents verification of the numerical model of masonry infill walls against the experimental results. Three cases are investigated: an undamaged model, a damaged model, and a carbon fiber-reinforced polymer (CFRP) strip. ABAQUS commercial finite element model (FEM) software was used in the modeling. Nonlinear behavior as well as cracking and crushing of masonry bricks were simulated using the Concrete Damaged Plasticity (CDP) model. To solve this, a three-dimensional simplified micro-model was used. Experimental and simulation of the hysteresis curve, skeleton curve, damage patterns, maximum and minimum stresses, and plane strain distribution were compared. The changes in natural frequencies, and mode shapes before and after CFRP strengthening masonry wall are evaluated. A sensitivity analysis was done to study the effect of damage and strengthening on the nonlinear behavior of steel frames with masonry infill. This investigation demonstrated that the numerical model was able to effectively simulate and predict the strength of these models. Then a look at the effect on seismic performance is reported and commented on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Liu Y, Manesh P (2013) Concrete masonry infilled steel frames subjected to combined in-plane lateral axial loading: an experimental study. Eng Struct 52:331–339

    Article  Google Scholar 

  2. Haach VG, Vasconcelos G, Lourenço PB (2010) Experimental analysis of reinforced concrete block masonry walls subjected to in-plane cyclic loading. J Struct Eng 136(4):452–462

    Article  Google Scholar 

  3. Mehrabi AB, Shing PB (1997) Finite element modeling of masonry-infilled RC frames. J Struct Eng 123(5):604–613

    Article  Google Scholar 

  4. Chen X, Liu Y (2015) Numerical study of in-plane behaviour strength of concrete masonry infills with openings. Eng Struct 82:226–235

    Article  Google Scholar 

  5. Koutromanos I, Stavridis A, Shing PB, Willam K (2011) Numerical modeling of masonry-infilled RC frames subjected to seismic loads. Comput Struct 89(11–12):1026–1037

    Article  Google Scholar 

  6. Chengcheng Z, Li L, Haihong L (2018) Dynamic analysis of horizontal inlay reinforcement based on ABAQUS masonry structure. Value Eng 37(12):122–124

    Google Scholar 

  7. Buonopane SG, White RN (1999) Pseudodynamic testing of masonry infilled reinforced concrete frame. J Struct Eng 125(6):578–589

    Article  Google Scholar 

  8. Žarnić R, Gostič S, Crewe AJ, Taylor CA (2001) Shaking table tests of 1: 4 reduced-scale models of masonry infilled reinforced concrete frame buildings. Earthq Eng Struct Dyn 30(6):819–834

    Article  Google Scholar 

  9. Hashemi A, Mosalam KM (2006) Shake-table experiment on reinforced concrete structure containing masonry infill wall. Earthq Eng Struct Dyn 35(14):1827–1852

    Article  Google Scholar 

  10. Asteris PG, Repapis CC, Repapi EV, Cavaleri L (2017) Fundamental period of infilled reinforced concrete frame structures. Struct Infrastruct Eng 13(7):929–941

    Article  Google Scholar 

  11. Di Sarno L, Wu JR (2020) Seismic assessment of existing steel frames with masonry infills. J Constr Steel Res 169:106040

  12. Asteris PG, Cavaleri L, Di Trapani F, Tsaris AK (2017) Numerical modelling of out-of-plane response of infilled frames: state of the art future challenges for the equivalent strut macromodels. Eng Struct 132:110–122

    Article  Google Scholar 

  13. Tasnimi AA, Mohebkhah A (2011) Investigation on the behavior of brick-infilled steel frames with openings, experimental analytical approaches. Eng Struct 33(3):968–980

    Article  Google Scholar 

  14. Faraji Najarkolaie K, Mohammadi M, Fanaie N (2017) Realistic behavior of infilled steel frames in seismic events: experimental analytical study. Bull Earthq Eng 15:5365–5392

    Article  Google Scholar 

  15. Di Sarno L, Freddi F, D’Aniello M, Kwon OS, Wu JR, Gutierrez-Urzua F, Strepelias E (2021) Assessment of existing steel frames: numerical study, pseudo-dynamic testing influence of masonry infills. J Constr Steel Res 185:106873

    Article  Google Scholar 

  16. Mehrabi AB, Benson Shing P, Schuller MP, Nol JL (1996) Experimental evaluation of masonry-infilled RC frames. J Struct Eng 122(3):228–237

    Article  Google Scholar 

  17. Canbay E (2001) Contribution of RC infills to the seismic behavior of structural systems. PhD Dissertation, University of Middle East Technical

  18. Anil O, Altin S (2006) An experimental study on reinforced concrete partially infilled frames. Eng Struct 29(2007):449–460

    Google Scholar 

  19. Darwish MMSED (2006) Numerical modeling of infill RC walls in seismic retrofit of RC frames. Doctoral dissertation, University of American

  20. Sivri M, Demir F, Kuyucular A (2006) The effects of infill walls, frame structures on the earthquake behavior failure mechanism. J Inst Nat Sci 10(1):109–115

    Google Scholar 

  21. Lotfi HR, Shing PB (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120(1):63–80

    Article  Google Scholar 

  22. Al-Chaar G, Mehrabi AB, Manzouri T (2008) Finite element interface modeling experimental verification of masonry-infilled R/C frames Longmont. Masonry Society, CO, USA

    Google Scholar 

  23. Stavridis A, Shing PB (2010) Finite-element modeling of nonlinear behavior of masonry-infilled RC frames. J Struct Eng 136(3):285–296

    Article  Google Scholar 

  24. Mohyeddin A, Goldsworthy HM, Gad EF (2013) FE modelling of RC frames with masonry infill panels under in-plane out-of-plane loading. Eng Struct 51:73–87

    Article  Google Scholar 

  25. Minaie E, Moon FL, Hamid AA (2014) Nonlinear finite element modeling of reinforced masonry shear walls for bidirectional loading response finite elements in analysis. Design 84:44–53

    Google Scholar 

  26. Kim M, Yu E (2021) Experimental study on lateral-load-resisting capacity of masonry-infilled reinforced concrete frames. Appl Sci 11(21):9950

    Article  Google Scholar 

  27. Caliò I, Pantò B (2014) A macro-element modelling approach of infilled frame structures. Comput Struct 143:91–107

    Article  Google Scholar 

  28. Peng X, Gu Q (2013) Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. Struct Des Tall Spec Build 22(11):831–846

    Article  Google Scholar 

  29. Zhai CH, Kong JC, Wangm XM, Wang XH (2018) Finite-element analysis of out-of-plane behaviour of masonry infill walls. Proc Inst Civil Eng Struct Build 171(3):203–215

    Article  Google Scholar 

  30. Kubalski T, Marinković M, Butenweg C (2016) Numerical investigation of masonry infilled RC frames. In: 16th International Brick Block Masonry Conference, pp 26–30

  31. Yekrangnia M, Asteris PG (2020) Multi-strut macro-model for masonry infilled frames with openings. J Build Eng 32:101683

    Article  Google Scholar 

  32. Markulak D, Dokšanović T, Radić I, Miličević I (2018) Structurally environmentally favorable masonry units for infilled frames. Eng Struct 175:753–764

    Article  Google Scholar 

  33. Cavaleri L, Di Trapani F, Asteris PG, Sarhosis V (2017) Influence of column shear failure on pushover based assessment of masonry infilled reinforced concrete framed structures: a case study. Soil Dyn Earthq Eng 100:98–112

    Article  Google Scholar 

  34. Nasiri E, Liu Y (2019) The out-of-plane behaviour of concrete masonry infills bounded by reinforced concrete frames. Eng Struct 184:406–420

    Article  Google Scholar 

  35. Minga E, Macorini L, Izzuddin BA, Calio I (2020) 3D macroelement approach for nonlinear FE analysis of URM components subjected to in-plane out-of-plane cyclic loading. Eng Struct 220:110951

    Article  Google Scholar 

  36. Azariani MG, Ghanbari-Ghazijahani T, Mohebkhah A, Classen M (2021) Concrete- timber-filled tubes under axial compression. Numerical theoretical study. J Build Eng 44:103231

    Article  Google Scholar 

  37. Tabeshpour MR, Azad A, Golafshani, AA (2012) Seismic behavior retrofit of infilled frames. Earthquake-Resistant Structures-Design, Assessment Rehabilitation

  38. Binici B, Ozcebe G (2006) Seismic evaluation of infilled reinforced concrete frames strengthened with FRPS. In: Proceedings of the 8th US national conference on earthquake engineering

  39. Batikha M (2008) Strengthening of thin metallic cylindrical shells using fibre reinforced polymers

  40. Yuksel E, Ozkaynak H, Buyukozturk O, Yalcin C, Dindar AA, Surmeli M, Tastan D (2010) Performance of alternative CFRP retrofitting schemes used in infilled RC frames. Constr Build Mater 24(4):596–609

    Article  Google Scholar 

  41. Ozkaynak H, Yuksel E, Buyukozturk O, Yalcin C, Dindar AA (2011) Quasi-static pseudo-dynamic testing of infilled RC frames retrofitted with CFRP material. Compos B Eng 42(2):238–263

    Article  Google Scholar 

  42. Altin S, Anil Ö, Kara ME, Kaya M (2008) An experimental study on strengthening of masonry infilled RC frames using diagonal CFRP strips. Compos B Eng 39(4):680–693

    Article  Google Scholar 

  43. Butenweg C, Marinković M, Kubalski T, Klinkel S (2016) Masonry infilled reinforced concrete frames under horizontal loading. Stahlbetonrahmen mit Ausfachungen aus Mauerwerk unter horizontalen Belastungen. Mauerwerk 20(4):305–312

    Article  Google Scholar 

  44. Akın E, Özcebe G, Canbay E, Binici B (2014) Numerical study on CFRP strengthening of reinforced concrete frames with masonry infill walls. J Compos Constr 18(2):04013034

    Article  Google Scholar 

  45. Li T, Silva PF, Belarbi A, Nanni A, Myers JJ (2001) Retrofit of un-reinforced infill masonry walls with FRP. J Compos Constr 5:559–5637

    Google Scholar 

  46. Arifuzzaman S, Saatcioglu M (2012) Seismic retrofit of load bearing masonry walls by FRP sheets. In: Proceedings of the 15th world conference on earthquake engineering

  47. Proença JM, Gago AS, Costa AV (2012) Strengthening of masonry wall load bearing structures with reinforced plastering mortar solution. In: Proceedings of the 15th world conference on earthquake engineering (15WCEE), Lisbon

  48. Padalu PKVR, Singh Y, Das S (2020) Cyclic two-way out-of-plane testing of unreinforced masonry walls retrofitted using composite materials. Constr Build Mater 238:117784

    Article  Google Scholar 

  49. Leeanansaksiri A, Panyakapo P, Ruangrassamee A (2018) Seismic capacity of masonry infilled RC frame strengthening with expanded metal ferrocement. Eng Struct 159:110–127

    Article  Google Scholar 

  50. Coccia S, Di Carlo F, Imperatore S (2020) Masonry walls retrofitted with vertical FRP rebars. Buildings 10(4):72

    Article  Google Scholar 

  51. Tanjung J, Ismail FA, Putra R (2020) A simple method for strengthening the brick masonry infilled in the reinforced concrete frame structure. Geomate J 18(66):118–123

    Google Scholar 

  52. Furtado A, Rodrigues H, Arêde A, Varum H (2020) Experimental tests on strengthening strategies for masonry infill walls: a literature review. Constr Build Mater 263:120520

    Article  Google Scholar 

  53. Samberou AMS (2021) Masonry walls behavior determination under cyclic loads by experimental finite element method strengthening with FRP material. Phd Dissertation, University of Karadeniz Technical

  54. Release 112 Bruel Kjaer (2006) Sound vibration measurement A/S PULSE analyzers Solutions, Denmark

  55. Release 40 (2006) Structural Vibration Solution A/S OMA, Denmark

  56. FEMA (2007) Interim testing protocols for determining the seismic performance characteristics of structural nonstructural components FEMA 461, Washington

  57. Dhakal RP, Pourali A, Tasligedik AS, Yeow T, Baird A, MacRae G, Palermo A (2016) Seismic performance of non-structural components contents in buildings: an overview of NZ research. Earthq Eng Eng Vib 15:1–17

    Article  Google Scholar 

  58. ABAQUS (2019) Inc ABAQUS 2019 User’s Manual Dassault Systèmes Simulia Corp

  59. Narayanan SP, Sirajuddin M (2013) Properties of brick masonry for FE modeling. Am J Eng Res 1:6–11

    Google Scholar 

  60. Liu Z, Crewe A (2020) Effects of size position of openings on in-plane capacity of unreinforced masonry. Bull Earthq Eng 18(10):4783–4812

    Article  Google Scholar 

  61. ASTM Stard A36 (2008) Stard Specification for Structural Steel ASTM International, West Conshohocken, PA. 101520/A0036_A0036M-08. www.astm.org

  62. Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Article  Google Scholar 

  63. Lourenço PB, Rots JG, Der V, Pluijm R (1999) Understing the tensile behavour of masonry parallel to the bed joints: a numerical approach. Masonry Int 12(3):96–103

    Google Scholar 

  64. Moradabadi E, Laefer DF, Clarke JA, Lourenço PB (2015) A semi-rom field finite element method to predict the maximum eccentric compressive load for masonry prisms. Constr Build Mater 77:489–500

    Article  Google Scholar 

  65. Page A (1981) The biaxial compressive strength of brick masonry In: ICE proceedings, vol 3. Thomas Telford, pp 893–906

  66. Belarbi A, Hsu TT (1994) Constitutive laws of concrete in tension reinforcing bars stiffened by concrete. Struct J 91(4):465–474

    Google Scholar 

  67. Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  68. Silva LM, Christoforo AL, Carvalho RC (2021) Calibration of concrete damaged plasticity model parameters for shear walls. Rev Matér 26

  69. Yazdani M, Habibi H (2023) Residual capacity evaluation of masonry arch bridges by extended finite element method. Struct Eng Int 33(1):183–194

    Article  Google Scholar 

  70. Tiberti S, Acito M, Milani G (2016) Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: damage causes seismic vulnerability mitigation hypothesis. Eng Struct 117:397–421

    Article  Google Scholar 

  71. Belakhdar K, Tounsi A (2015) Finite element analysis of initially damaged beams repaired with FRP plates. Compos Struct 134:429–439

    Article  Google Scholar 

  72. Bustamante-Góez L, Chica-Arrieta E, Villarraga-Ossa J (2019) Assessment of cohesive traction-separation relationship according stiffness variation. Revista UIS Ingenierías 18(2):67–76

    Article  Google Scholar 

  73. Peng Q, Zhou X, Yang C (2018) Influence of connection constructional details on masonry-infilled RC frames under cyclic loading. Soil Dyn Earthq Eng 108:96–110

    Article  Google Scholar 

  74. Karnati SR, Shivakumar K (2020) Limited Input Benzeggagh Kenane delamination failure criterion for mixed-mode loaded fiber reinforced composite laminates. Int J Fract 222(1–2):221–230

    Article  Google Scholar 

  75. Diehl T (2005) Modeling surface-bonded structures with ABAQUS cohesive elements: beam-type solutions In: ABAQUS users’ conference, pp 1–27

  76. Aref AJ, Dolatshahi KM (2013) A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures. Comput Struct 120:9–23

    Article  Google Scholar 

  77. Zhang M, Ding J, Pang L, Ding K (2023) Numerical study on the influence of in-plane damage on the out-of-plane seismic performance of masonry infill walls with opening in reinforced concrete frames. Adv Struct Eng 26(2):344–359

    Article  Google Scholar 

  78. Abdulla KF, Cunningham LS, Gillie M (2017) Simulating masonry wall behaviour using a simplified micro-model approach. Eng Struct 151:349–365

    Article  Google Scholar 

  79. Dhir PK, Tubaldi E, Ahmadi H, Gough J (2021) Numerical modelling of reinforced concrete frames with masonry infills rubber joints. Eng Struct 246:112833

    Article  Google Scholar 

  80. Yee SS, Kong KH, Liew RJY (2023) Numerical analysis of reinforced concrete composite wall under concentric axial loading. In: Proceedings of the 17th East Asian-Pacific conference on structural engineering construction, 2022: EASEC-17, Singapore. Springer Nature Singapore, Singapore, pp 1087–1100

  81. Karimi AH, Karimi MS, Kheyroddin A, Shahkarami AA (2016) Experimental numerical study on seismic behavior of an infilled masonry wall compared to an arched masonry wall. Structures 8:144–153

    Article  Google Scholar 

  82. Mahmod FHRW, Kareem KM, Ahani E, Ahmmad BS (2022) Appraising 2D discrete macro element model of masonry infill wall using ABAQUS CAE software. In: 2022 8th International engineering conference on sustainable technology development (IEC). IEEE, pp 83–88

  83. Wei MW, Richard Liew JY, Fu XY (2019) Nonlinear finite element modeling of novel partially connected buckling-restrained steel plate shear walls. Int J Steel Struct 19:28–43

    Article  Google Scholar 

  84. Zhou Y, Pei Y, Zhou Y, Hwang HJ, Yi W (2020) Field measurements for calibration of simplified models of the stiffening effect of infill masonry walls in high-rise RC framed shear-wall buildings. Earthq Eng Eng Vib 19:87–104

    Article  Google Scholar 

  85. Yazdani M (2021) Three-dimensional nonlinear finite element analysis for load-carrying capacity prediction of a railway arch bridge. Int J Civ Eng 19:823–836

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Projects Unit of Karadeniz Technical University (Project Numbers: FAY-2021-9635 and FBA-2024-11058), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Can Altunişik.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roudane, B., Adanur, S. & Altunişik, A.C. Numerical and Experimental Investigation on Cyclic Behavior of Masonry Infill Walls Retrofitted with CFRP. Int J Civ Eng (2024). https://doi.org/10.1007/s40999-024-00955-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40999-024-00955-4

Keywords

Navigation