Skip to main content
Log in

An Experimental and Numerical Study on Continuous RC Deep Beams Strengthened with CFRP Strips

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents the result of a research program and includes numerical analysis and experimental studies on continuous reinforced concrete deep beams and strengthening of these beams with carbon fiber reinforced polymer (CFRP) strips. Different shear span-to-overall depth ratio (a/h) between 1 and 0.33, and various reinforcing methods with CFRP strips were studied. The cracking behavior and failure modes of these beams were investigated. The experimental and numerical analysis indicated that CFRP strips significantly affect the shear capacity of continuous deep beams and their failure modes. Three experimental specimens strengthened with diagonal CFRP strips at 45° angle showed a 29%, 31%, and 24% increase in the bearing capacity, in comparison to their control beams. Among different CFRP strip arrangements in beam models, diagonal reinforcement at a 45° angle (SS45) was the most effective one, which increased the shear capacity up to 49%. Vertical U-wrap side arrangements (US90) showed the lowest increase in the bearing capacity for the beams. U strengthened beam models’ bearing capacity increased by 16%, 15%, and 13% compared to their control beams. Experimental and numerical results showed that (a/h) ratio is a key factor affecting deformability and the ultimate strength of continuous deep beams. The ultimate strength of continuous concrete deep beams increased when the a/h ratio decreased, and the mid-span deflection decreased with decreasing the a/h ratio. Finally, the load-bearing capacities of beams were compared with the internal and external indeterminate strut–tie analysis. The results of numerical modeling and experimental studies have high compatibility with indeterminate truss analysis with a 1% difference in the final load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

L :

Overall length

a :

Shear span

h :

Overall section depth

l :

Clear span

d :

Effective depth of beam

b :

Beam width

\({f}_{\mathrm{c}}^{^{\prime}}\) :

Concrete cylinder compressive strength

\({f}_{\mathrm{t}}\) :

Concrete tensile strength

\(E\) :

Elasticity modulus

\({E}_{\mathrm{c}}\) :

Concrete initial elastic modulus

\(d\) :

Damage variable

\({d}_{\mathrm{c}}\) :

Uniaxial compressive damage variable

\({d}_{\mathrm{t}}\) :

Uniaxial tensile damage variable

\({\varepsilon }_{\mathrm{c}}^{\mathrm{pl}}\) :

Compressive plastic strain

\({\varepsilon }_{\mathrm{t}}^{\mathrm{pl}}\) :

Tensile plastic strain

\({s}_{\mathrm{c}}\) :

Compressive stiffness recovery

\({s}_{\mathrm{t}}\) :

Tensile stiffness recovery

ν c :

Concrete Poisson’s ratio

θ:

Angle of dilation

\(\frac{{f}_{\mathrm{b}0}}{{f}_{\mathrm{c}0}}\) :

Ratio of equibiaxial to uniaxial compressive stress

K:

Ratio of the second stress invariant on the tensile meridian to compressive meridian at initial yield

\({f}_{\mathrm{c}}\) :

Concrete compressive stress

\({\varepsilon }_{0}\) :

Strain at peak compressive strength

\(\varepsilon\) :

Compressive strain of concrete

\({\varepsilon }_{\mathrm{u}}\) :

Ultimate concrete compressive strain

\({\varepsilon }_{\mathrm{cr}}\) :

Strain at peak tensile strength

\({\varepsilon }_{\mathrm{tu}}\) :

Concrete ultimate tensile strain

\({\sigma }_{\mathrm{t}}\) :

Tensile stress

\({\sigma }_{\mathrm{c}}\) :

Compressive stress

\({E}_{x}\) :

Elastic modulus in the longitudinal x direction

\({E}_{y}\) :

Elastic modulus in the longitudinal y direction

\({E}_{z}\) :

Elastic modulus in the longitudinal z direction

\({\nu }_{xy}\) :

Poisson’s ratio in the xy plane

\({\nu }_{xz}\) :

Poisson’s ratio in the xz plane

\({\nu }_{yz}\) :

Poisson’s ratio in the yz plane

\({G}_{xy}\) :

Shear modulus in the xy plane

\({G}_{xz}\) :

Shear modulus in the xz plane

\({G}_{yz}\) :

Shear modulus in the yz plane

K nn, K ss, K tt :

Initial elastic stiffness

\({\sigma }_{n}\) :

Maximum amount of tensile stress

\({\tau }_{\mathrm{s}},\) \({\tau }_{\mathrm{t}}\) :

Maximum amount of shear stresses

\({\sigma }_{n}^{0}\) :

Tensile cohesive strength

\({\tau }_{\mathrm{s}}^{0}\), \({\tau }_{\mathrm{t}}^{0}\) :

Shear cohesive strengths

\(\alpha\) :

Load distribution ratio

\(\rho\) :

Flexural reinforcement ratio

\({\rho }_{\mathrm{b}}\) :

Balanced flexural reinforcement ratio

\(\Upsilon\) :

Reaction distribution ratio

References

  1. ACI Committee 318 (2014) Building code requirements for structural concrete. ACI 318-14. American Concrete Institute, Farmington Hills

  2. ACI Committee 318 (2011) Building code requirements for structural concrete. ACI 318M-11. American Concrete Institute, Farmington Hills

  3. Eurocode2 (2004) Design of concrete structure-Part 1-1: general rules and rules for buildings. CEN, European Committee for standardization

  4. CSA (2004) Design of concrete structure. CSA A23.4-04. Canadian Standard Association, Canada

  5. CEB-FIP (2010) Fib model code for concrete structures. Lausanne, Switzerland. https://doi.org/10.1002/9783433604090

    Article  Google Scholar 

  6. Oh JK, Shin SW (2001) Shear strength of reinforced high-strength concrete deep beams. ACI Struct J 98(2):164–173. https://doi.org/10.14359/10184

    Article  Google Scholar 

  7. Aguilar G, Matamoros AB, Parra-Montesinos G, Ramirez J, Wight J (2002) Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams. ACI Struct J 99(4):539–548. https://doi.org/10.14359/12123

    Article  Google Scholar 

  8. Quintero-Febres CG, Parra-Montesinos G, Wight J (2006) Strength of struts in deep concrete members designed using strut-and-tie method. ACI Struct J 103(4):577–586. https://doi.org/10.14359/16434

    Article  Google Scholar 

  9. Ashour AF, Alvarez LF, Toropov VV (2003) Empirical modeling of shear strength of RC deep beams by genetic programming. Comput Struct 81:331–338. https://doi.org/10.1016/S0045-7949(02)00437-6

    Article  Google Scholar 

  10. Arabzadeh A, Rahaie AR, Aghayari R (2009) A simple strut-and-tie model for prediction of ultimate shear strength of RC deep beams. Int J Civ Eng 7(3):141–153

    Google Scholar 

  11. Kim BH, Yun YM (2011) An indeterminate strut-and-tie model and load distribution ratio for RC deep beams. Adv Struct Eng 14(6):1043–1057. https://doi.org/10.1260/1369-4332.14.6.1031

    Article  Google Scholar 

  12. Gandomi AH, Yun GJ, Alavi AH (2013) An evolutionary approach for modeling of shear strength of RC deep beams. Mater Struct 46(12):2109–2119. https://doi.org/10.1617/s11527-013-0039-z

    Article  Google Scholar 

  13. Arabzadeh A, Aghayari R, Rahai AR (2011) Investigation of experimental and analytical shear strength of reinforced concrete deep beams. Int J Civ Eng 9(3):207–214

    Google Scholar 

  14. Tetta ZC, Koutas LN, Bournas DA (2015) Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Compos B Eng 77:338–348. https://doi.org/10.1016/j.compositesb.2015.03.055

    Article  Google Scholar 

  15. Yan L (2015) Plain concrete cylinders and beams externally strengthened with natural flax fabric reinforced epoxy composites. Mater Struct 49(6):2083–2095. https://doi.org/10.1617/s11527-015-0635-1

    Article  Google Scholar 

  16. Yin P, Huang L, Yan L, Zhu D (2015) Compressive behavior of concrete confined by CFRP and transverse spiral reinforcement. Part A: experimental study. Mater Struct 49(3):1001–1011. https://doi.org/10.1617/s11527-015-0554-1

    Article  Google Scholar 

  17. Chen GF, Teng GJ (2003) Shear capacity of FRP-strengthened RC beams: FRP debonding. Constr Build Mater 17:27–41. https://doi.org/10.1016/S0950-0618(02)00091-0

    Article  Google Scholar 

  18. Chen GM, Teng JG, Chen JF, Rosenboom OA (2010) Interaction between steel stirrups and shear-strengthening FRP strips in RC beams. J Compos Constr 14(5):498–509. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000120

    Article  Google Scholar 

  19. Bousselham A, Chaallal O (2008) Mechanisms of shear resistance of concrete beams strengthened in shear with externally bonded FRP. J Compos Constr. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(499)

    Article  Google Scholar 

  20. Abdalla-Jaber MS, Walker PR, Hutchinson AR (2003) Shear strengthening of reinforced concrete beams using different configurations of externally bonded carbon fiber reinforced plates. Mater Struct 36(5):291–301. https://doi.org/10.1007/BF02480868

    Article  Google Scholar 

  21. Al-Sulaimani GJ, Sharif A, Basunbul IA, Baluch MH, Ghaleb BN (1994) Shear repair for reinforced concrete by fiberglass plate bonding. ACI Struct J 91(4):458–464. https://doi.org/10.14359/4153

    Article  Google Scholar 

  22. Haddad RH, Marji CS (2019) Composite strips with u-shaped CFRP wrap anchor systems for strengthening reinforced concrete beams. Int J Civ Eng 17:1799–1811. https://doi.org/10.1007/s40999-019-00447-w

    Article  Google Scholar 

  23. Gamino AL, Sousa JLAO, Manzoli OL, Bittencourt TN (2010) RC structures strengthened with CFRP part II: analysis of shear models. IBRACON Estrut Mater 3(1):24–49. https://doi.org/10.1590/S1983-41952010000100003

    Article  Google Scholar 

  24. Bukhari IA, Vollum RI, Ahmad S, Sagaseta J (2010) Shear strengthening of reinforced concrete beams with CFRP. Mag Concrete Res 62(1):65–77. https://doi.org/10.1680/macr.2008.62.1.65

    Article  Google Scholar 

  25. Altin S, Anil O, Kopraman Y, Mertolu C, Kara ME (2010) Improving shear capacity and ductility of shear deficient RC beams using CFRP strips. J Reinf Plast Compos 29(19):2975–2991. https://doi.org/10.1177/0731684410363182

    Article  Google Scholar 

  26. Bousselham A, Chaallal O (2006) Effect of transverse steel and shear span on the performance of RC beams strengthened in shear with CFRP. Compos B Eng 37(1):37–46. https://doi.org/10.1016/j.compositesb.2005.05.012

    Article  Google Scholar 

  27. Fayyadh MM, Razak HA (2021) Externally bonded FRP applications in RC structures: a state-of-the-art review. Jordan J Civ Eng. https://doi.org/10.1007/s11029-020-09861-x

    Article  Google Scholar 

  28. Vukovic NK, Jevric M, Zejak R (2020) Experimental analysis of RC elements strengthened with CFRP strips. Mech Compos Mater 56:75–84

    Article  Google Scholar 

  29. Obaidat YT (2018) The effect of beam design on behaviour of retrofitted beam using CFRP. Jordan J Civ Eng 12(1):149–161

    Google Scholar 

  30. Chen H, Yi WJ, Ma ZJ, Hwang HJ (2019) Shear strength of reinforced concrete simple and continuous deep beams. ACI Struct J 116(6):31–40. https://doi.org/10.14359/51718003

    Article  Google Scholar 

  31. Beshara FBA, Shaaban IG, Mustafa TS (2013) Behavior of reinforced concrete continuous deep beams in shear. Benha University Faculty of Engineering at Shoubra, Cairo

    Google Scholar 

  32. Arabzadeh A (2020) Analysis of boundary condition effects on RC deep beams. Structures 23:821–830. https://doi.org/10.1016/j.istruc.2019.12.004

    Article  Google Scholar 

  33. Khatab MAT, Ashour AF, Sheehan T, Lam D (2016) Experimental investigation on continuous reinforced SCC deep beams and comparisons with code provisions and models. Eng Struct 131:264–274. https://doi.org/10.1016/j.engstruct.2016.11.005

    Article  Google Scholar 

  34. Khattab SAR, Alimustafa J (2017) Behavior of reinforced concrete continuous deep beams-literature review. In: Paper presented at the second conference of post graduate researches, Baghdad, Iraq

  35. Bengar HA, Shahmansouri AA (2020) A new anchorage system for CFRP strips in externally strengthened RC continuous beams. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101230

    Article  Google Scholar 

  36. Islam MR, Mansur MA, Maalej M (2005) Shear strengthening of RC deep beams using externally bonded FRP systems. Cem Concr Compos 27(3):413–420. https://doi.org/10.1016/j.cemconcomp.2004.04.002

    Article  Google Scholar 

  37. Alsadat Asghari A, Tabrizian Z, Hossein Ali Beygi M, Ghodrati Amiri G, Navayineya B (2014) An experimental study on shear strengthening of RC lightweight deep beams using CFRP. J Rehabil Civ Eng 2(2):9–19. https://doi.org/10.22075/JRCE.2014.204

    Article  Google Scholar 

  38. Maaddawy TE, Sherif S (2009) FRP composites for shear strengthening of reinforced concrete deep beams with openings. Compos Struct 89(1):60–69. https://doi.org/10.1016/j.compstruct.2008.06.022

    Article  Google Scholar 

  39. El Battawy OM, El Kashif KF, Abdalla HA (2019) Experimentally comparative study on different strengthening methods of reinforced concrete deep beams. Civ Eng J. https://doi.org/10.28991/cej-2019-03091388

    Article  Google Scholar 

  40. Librescu L, Song O (2006) Thin-walled composite beams. Springer Netherlands, Berlin. https://doi.org/10.1007/1-4020-4203-5

    Book  MATH  Google Scholar 

  41. Hensen E, Willam K, Carol I (2001) A two-surface anisotropic damage/plasticity model for plain concrete. In: Paper presented at the Framcos-4, Paris

  42. Malm R (2009) Predicting shear type crack initiation and growth in concrete with non-linear finite element method. Dissertation, Royal Institute of Technology

  43. Metwally IM (2017) Three-dimensional nonlinear finite element analysis of concrete deep beam reinforced with GFRP bars. HBRC J 13(1):25–38. https://doi.org/10.1016/j.hbrcj.2015.02.006

    Article  Google Scholar 

  44. Hognestad E, Hanson NW, McHenry D (1995) Concrete stress distribution in ultimate strength design. ACI J Proc 52(12):455–480. https://doi.org/10.14359/11609

    Article  Google Scholar 

  45. ABAQUS (2014) ABAQUS Standard Version 6.13-4 and ABAQUS Standard user's manual. Hibbitt Karlsson and Sorensen Inc

  46. Birtel V, Mark P (2006) Parameterised finite element modelling of RC beam shear failure. In: ABAQUS users’ conference. pp 95–108

  47. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(2):329–334. https://doi.org/10.1115/1.3153664

    Article  Google Scholar 

  48. Obaidat YT, Heyden S, Dahlblom O (2010) The effect of CFRP and CFRP/concrete interface models when modeling retrofitted RC beams with FEM. Compos Struct 92(6):1391–1398. https://doi.org/10.1016/j.compstruct.2009.11.008

    Article  Google Scholar 

  49. Benzeggagh ML, Kenane M (1996) Measurements of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56(4):439–449. https://doi.org/10.1016/0266-3538(96)00005-X

    Article  Google Scholar 

  50. Rogowsky DM, Macgregor JG, Ong SY (1986) Tests of reinforced concrete deep beams. ACI Struct J 83(4):614–623. https://doi.org/10.14359/10558

    Article  Google Scholar 

  51. Ashour AF (1997) Test of reinforced concrete continuous deep beams. ACI Struct J 94(1):3–11. https://doi.org/10.14359/455

    Article  Google Scholar 

  52. Yang KH, Chung HS, Ashour AF (2007) Influence of section depth on the structural behavior of reinforced concrete continuous deep beams. Mag Concr Res 59(8):575–586. https://doi.org/10.1680/macr.2007.59.8.575

    Article  Google Scholar 

  53. Mohamed AR, Shoukry MS, Saeed JM (2014) Prediction of the behavior of RC deep beams with web openings using the finite element method. Alex Eng J 53(2):329–339. https://doi.org/10.1016/j.aej.2014.03.001

    Article  Google Scholar 

  54. Singh B, Kaushik SK, Naveen KF, Sharma S (2006) Design of a continuous deep beam using the strut and tie method. Asian J Civ Eng 7(5):461–477

    MATH  Google Scholar 

  55. Yang KH, Ashour AF (2008) Load capacity of reinforced concrete continuous deep beams. Struct Eng 134(6):919–929. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(919)

    Article  Google Scholar 

  56. Foster SJ, Gilbert RI (1998) Experimental studies on high-strength concrete deep beams. ACI Struct J 95(4):382–390. https://doi.org/10.14359/554

    Article  Google Scholar 

  57. Chae HS, Yun YM (2015) Strut-tie model for two-span continuous RC deep beams. Comput Concr 16(3):357–380. https://doi.org/10.12989/cac.2015.16.3.357

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MZ did the finite element and experimental study. AR directed the research as a professor and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alireza Rahai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargarian, M., Rahai, A. An Experimental and Numerical Study on Continuous RC Deep Beams Strengthened with CFRP Strips. Int J Civ Eng 20, 619–637 (2022). https://doi.org/10.1007/s40999-021-00677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-021-00677-x

Keywords

Navigation