Skip to main content
Log in

Analysis of RC Beam-Columns Subjected to Monotonic and Cyclic Oblique Shear and Axial Loading

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

A novel algorithm is proposed to analyze the reinforced concrete (RC) beam-columns (B-Cs), having rectangular or non-rectangular sections, subjected to monotonic or cyclic oblique shear and axial loading. B-Cs are discretized into the macro-elements (MEs) in the form of discrete finite-element (member) models, and their critical sections are discretized into fiber elements. A novel numerical convergence search method is proposed as the root-finding technique to reach the equilibrium state in each section. A three-loop iteration process is adapted employing three main characteristic strain variables, equilibrium functions, and reasonably acceptable tolerances. Based on the proposed algorithm, a computer program has been developed to simulate the non-linear behavior of B-Cs. A good agreement has been observed between the results obtained by applying the proposed algorithm and the experimental test results carried out by other researchers. The difference between the results of the ultimate strengths obtained using the proposed algorithm and the experimental tests on the B-Cs subjected to the oblique shear force and axial load is less than 5%. The results indicate that the ultimate strain of concrete at the most compressed corner of the critical section of B-C ranges from 0.0024 to 0.0038 under maximum to zero axial loads, respectively, and the application of 0.003 value given by ACI code for the ultimate strain of concrete can lead to unconventional non-conservative approximate results when B-C is subjected to an axial force larger than 70% of its axial load capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Richard Yen JY (1991) Quasi-Newton method for reinforced-concrete column analysis and design. J Struct Struct Div ASCE 117(3):657–666. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:3(657)

    Article  Google Scholar 

  2. Lau CY, Chan SL, So AKW (1993) Biaxial bending of arbitrarily shaped reinforced concrete columns. Struct J ACI 90(3):269–278. https://doi.org/10.14359/4235

    Article  Google Scholar 

  3. Afefy HME (2012) Ultimate flexural rigidity of reinforced concrete beam–column members. Proc Inst Civ EngStruct Build 165(6):299–308. https://doi.org/10.1680/stbu.10.00031

    Article  Google Scholar 

  4. Morfidis K, Kiousis PD, Xenidis H (2014) A non-linear model for ultimate analysis and design of reinforced concrete structures. Comput Concr 14(6):695–710. https://doi.org/10.12989/cac.2014.14.6.695

    Article  Google Scholar 

  5. Spacone E, Filippou FC, Taucer FF (1996) Fibre beam-column model for non-linear analysis of R/C frames: part I. Formul Earthq EngStruct Dyn 25(7):711–726. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7%3c711::AID-EQE576%3e3.0.CO;2-9

    Article  Google Scholar 

  6. Izzuddin BA, Siyam AAFM, Smith DL (2002) An efficient beam-column formulation for 3D reinforced concrete frames. Comput Struct 80(7–8):659–676. https://doi.org/10.1016/S0045-7949(02)00033-0

    Article  Google Scholar 

  7. Scott MH, Franchin P, Fenves GL, Filippou FC (2004) Response sensitivity for nonlinear beam–column elements. J Struct Eng ASCE 130(9):1281–1288. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1281)

    Article  Google Scholar 

  8. Scott MH, Fenves GL (2006) Plastic hinge integration methods for force-based beam-column elements. J Struct Eng ASCE 132(2):244–252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)

    Article  Google Scholar 

  9. Pham B-H, Davenne L, Brancherie D, Ibrahimbegovic A (2010) Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment. Comput Concr 7(4):303–315. https://doi.org/10.12989/cac.2010.7.4.303

    Article  Google Scholar 

  10. Mashaly E-S, El-Heweity M, Abou-Elfath M, Ramada M (2011) A new beam-column model of seismic analysis of RC frames I: model derivation. Alex Eng J 5(4):313–320·

  11. Mashaly E, El-Heweity M, Abou-Elfath H, Ramadan M (2012) A new beam-column model for seismic analysis of RC frames—part II: Model Verification. Alex Eng J 51(1):53–60. https://doi.org/10.1016/j.aej.2010.12.003

    Article  Google Scholar 

  12. Abbasnia R, Mirzadeh N, Kildashti K (2011) Assessment of axial force effect on improved damage index of confined RC beam-column members. Int J Civ Eng 9(3):2011:237–246. http://ijce.iust.ac.ir/article-1-237-en.html

  13. Sadeghi K, Nouban F (2017) A highly accurate algorithm for nonlinear numerical simulation of RC columns under biaxial bending moment and axial loading applying rotary oblique fiber-element discretization. Int J Civ Eng 15(8):1117–1129. https://doi.org/10.1007/s40999-017-0260-1

    Article  Google Scholar 

  14. Kenawy M, Kunnath S, Kolwankar S, Kanvinde A (2018) Fiber-based nonlocal formulation for simulating softening in reinforced concrete beam-columns. J Struct Eng ASCE 144(12):04018217-1–9. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002218

    Article  Google Scholar 

  15. Luo H, Paal SG (2018) Machine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. J Comput Civ Eng ASCE 32(5):04018042-1–4. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000787

    Article  Google Scholar 

  16. Masi A, Santarsiero G, Mossucca A, Nigro D (2014) Influence of axial load on the seismic behavior of RC beam-column joints with wide beam. Appl Mech Mater 508:208–214. https://doi.org/10.4028/www.scientific.net/AMM.508.208

    Article  Google Scholar 

  17. Sasani M (2004) Shear strength and deformation capacity models for RC columns. In: Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1–6, Paper No. 1838

  18. Mostafaei H, Vecchio FJ (2008) Uniaxial shear-flexure model for reinforced concrete elements. J Struct Eng ASCE 134(9):1538–1547. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1538)

    Article  Google Scholar 

  19. Li Y-A, Hwang S-J (2017) Prediction of lateral load displacement curves for reinforced concrete short columns failed in shear. J Struct Eng 143(2):04016164. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001656

    Article  Google Scholar 

  20. Sadeghi K, Nouban F (2017) Global and local cumulative damage models for RC structures subjected to monotonic, cyclic or fatigue loading. Int J Civ Eng 15(7):1063–1075. https://doi.org/10.1007/s40999-017-0171-1

    Article  Google Scholar 

  21. Sadeghi K (2011) Energy based structural damage index based on nonlinear numerical simulation of structures subjected to oriented lateral cyclic loading. Int J Civ Eng 9(3):155–164. http://ijce.iust.ac.ir/article-1-563-en.html

  22. Reinhorn AM, Deierlein GG, Willford M, (2010) Nonlinear structural analysis for seismic design—a guide for practicing engineers. Edition: NEHRP Seismic Design Technical Brief No. 4, NIST GCR 10–917–5, Publisher: National Institute of Standards and Technology, Gaithersburg, MD, USA.

  23. Sadeghi K (2014) Analytical stress-strain model and damage index for confined and unconfined concretes to simulate RC structures under cyclic loading. Int J Civ Eng 12(3):333–343

    Google Scholar 

  24. CEB Code (1978) Code-Modèle CEB-FIP pour les structures en béton. Bulletin d’information no. 124–125F, Comité Euro-International du Béton, Système International de Réglementation Technique Unifiée des Structures. Vol. 1 and 2, Paris. https://www.fib-international.org/publications/ceb-bulletins/syst%C3%A8me-international-de-r%C3%A9glementation-technique-unifi%C3%A9e-des-st-detail.html

  25. Sheikh SA (1982) A comparative study of confinement models. ACI J 79(4):296–305 ((Title no. 79-30))

    Google Scholar 

  26. Park R, Kent DC, Sampson RA (1972) Reinforced concrete members with cyclic loading. J Struct Div ASCE, 98(ST7):1341–1360. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0127682

  27. Sadeghi K (1995) Simulation numérique du comportement de poteaux en béton armé sous cisaillement dévié alterné. PhD Dissertation, University of Nantes/Ecole Centrale de Nantes, Nantes, France. http://www.theses.fr/1995NANT2019

  28. Priestley MJN, Park R (1987) Strength and ductility of concrete bridge columns under seismic loading. ACI Struct J 84(1):61–76

    Google Scholar 

  29. Garcia Gonzalez JJ (1990) Contribution á l’étude des poteaux en béton armé soumis á un cisaillement dévié alterné. PhD Dissertation, University of Nantes/Ecole Centrale de Nantes, Nantes, France. https://www.theses.fr/1990NANT2042

  30. Sieffert, JG, Lamirault, J Garcia, JJ (1990) Behavior of R/C columns under static compression and lateral cyclic displacement applied out of symmetrical planes. In: Kratzig WB et al (ed) Structural dynamics: Proceedings of the European Conference on Structural Dynamics, EURODYN '90, June 1990, Bochum, Germany, Publisher: Rotterdam, Netherlands: Balkema, 1991, Vol. 1, pp 543–550

  31. Saatcioglu, M, Grira M (1999) Confinement of reinforced concrete columns with welded reinforcement grids. American Concrete Institute, ACI Struct J 96(1):29–39. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/593. Accessed Sept 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, K., Nouban, F. Analysis of RC Beam-Columns Subjected to Monotonic and Cyclic Oblique Shear and Axial Loading. Int J Civ Eng 19, 733–748 (2021). https://doi.org/10.1007/s40999-021-00603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-021-00603-1

Keywords

Navigation