Skip to main content
Log in

Nonlinear Static-Oriented Pushover Analysis of Reinforced Concrete Columns Using Variable Oblique Finite-Element Discretization

  • Research Paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

A fast converging and fairly accurate nonlinear simulation method to assess the behavior of reinforced concrete columns subjected to static-oriented pushover force and axial loading (sections under biaxial-bending moment and axial loading) is proposed. In the proposed method, the sections of column are discretized into “Variable Oblique Finite Elements” (VOFE). By applying the proposed oblique discretization method, the time of calculation is significantly decreased, and since VOFE are always parallel to neutral axis, a uniform stress distribution along each oblique element is established. Consequently, the variations of stress distribution across an element are quite small which increases the accuracy of the calculations. In the discretization of section, the number of VOFE is significantly smaller than the number of “Fixed Rectangular Finite Elements” (FRFE). The advantages of using VOFE compared to FRFE are faster convergence and more accurate results. The nonlinear local degradation of materials and the pseudo-plastic hinge produced in the critical sections of the column are also considered in the proposed simulation method. A computer program is developed to calculate the local and global behavior of reinforced concrete columns under static-oriented pushover and cyclic loading. The proposed simulation method is validated by the results of tests carried out on the full-scale reinforced concrete columns. The application of the “Components Effects Combination Method” is compared with the proposed “Simultaneous Direct Method” (SDM). The obtained results show the necessity of applying SDM for nonlinear calculations. Especially, during the post-elastic phase, which occurs frequently during earthquake loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rofooei FR, Mirjalili MR, Attari NKA (2011) Spectra combination method for pushover analysis of special steel moment resisting frames. Int J Civ Eng 10(4):245–252

    Google Scholar 

  2. Gurrin A (1968) Traité de béton armé, Tome 2, Le calcul du béton armé, Paris

  3. Yen YJR (1991) Quasi-Newton method for reinforced concrete column analysis and design. J Struct Struct Div ASCE 117(3):657–666

    Article  Google Scholar 

  4. Yau CY, Chan SL, So AKW (1993) Biaxial bending of arbitrarily shaped reinforced concrete column. Structural Journal of ACI, Technical Paper, Title no. 90-S28, 90(3)

  5. Alnoury SI, Chen WF (1982) Behavior and design of reinforced and composite concrete sections. J Struct Div ASCE 108(ST6):1266–1284

    Google Scholar 

  6. Hsu CT, Mirza S (1973) Structural concrete biaxial bending and compression. J Struct Div ASCE 99(ST2):2317–2335

    Google Scholar 

  7. Brondum-Nielsen T (1985) Ultimate flexural capacity of cracked polygonal concrete sections under biaxial bending. Journal of ACI, Technical Paper, no. 82–80, Nov.–Dec., 863–869

  8. Brondum-Nielsen T (1984) Serviceability limit state analysis of concrete sections under biaxial bending. Journal of ACI, no. 5, proceedings vol. 81, Title no. 81-37, Sept.–Oct

  9. Zak L (1993) Computer analysis of reinforced concrete sections under biaxial bending and longitudinal load. Struct J ACI 90(2):163–169

    MathSciNet  Google Scholar 

  10. Hashemi SSH, Vaghefi M (2015) Investigation of bond slip effect on the P-M interaction surface of RC columns under biaxial bending. Sci Iran Iournal Trans A 22(2):388–399

    Google Scholar 

  11. Abbasnia R, Mirzadeh N, Kildashti K (2011) Assessment of axial force effect on improved damage index of confined RC beam-column members. Int J Civ Eng 9(3):237–246

    Google Scholar 

  12. Sadeghi K (2014) Analytical stress–strain model and damage index for confined and unconfined concretes to simulate RC structures under cyclic loading. Int J Civ Eng 12(3):333–343

    Google Scholar 

  13. Park R, Kent DC, Sampson RA (1972) Reinforced concrete members with cyclic loading. J Struct Div ASCE 98(7):1341–1359

    Google Scholar 

  14. Comité Euro-International du Béton (1978) Code-Modèle CEB-FIP pour les structures en béton, Bulletin d’information No. 124-125F, vol 1 and 2, Paris

  15. Sheikh SA (1982) A comparative study of confinement models. ACI J 79(4):296–305

    Google Scholar 

  16. Sadeghi K (1995) Simulation numérique du comportement de poteaux en béton arme sous cisaillement dévié alterne. Ph.D. Thesis, Ecole Central de Nantes/Université de Nantes

  17. Lamirault J (1984) Contribution á l’étude du comportement des ossatures en béton armé sous cisaillement normales. Simulation par analyse non linéaire globale. Ph.D. Thesis, Ecole Central de Nantes/Université de Nantes, Nantes

  18. Priestley MJN, Park R (1991) Strength and durability of concrete bridge columns under seismic loading. Struct J ACI 88(4):61–67

    Google Scholar 

  19. Sadeghi K (2011) Energy based structural damage index based on nonlinear numerical simulation of structures subjected to oriented lateral cyclic loading. Int J Civ Eng 9(3):155–164

    Google Scholar 

  20. Garcia Gonzalez JJ (1990) Contribution á l’étude des poteaux en béton armé soumis á un cisaillement dévié alterné. Ph.D. Thesis, Ecole Central de Nantes/Université de Nantes

  21. Sieffert JG, Lamirault J, Garcia Gonzalez JJ (1990) Behavior of R/C columns under static compression and lateral cyclic displacement applied out of symmetrical planes. In: Kratzig WB et al (eds) Structural dynamics, vol 1. Balkema, Rotterdam

    Google Scholar 

  22. Sadeghi K, Lamirault J, Sieffert JG (1993) Damage indicator improvement applied on R/C structures subjected to cyclic loading. Structural Dynamics, Eurodyn’93, Balkema, Rotterdam, vol 1, 129–136

  23. AFPS90 (1990) Combinaison des effets des composantes du mouvement sismique, Recommandations AFPS90 pour la rédaction de règles relative aux ouvrages et installations à réaliser dans les régions sujettes aux séismes, AFPS, 101–105, Paris

Download references

Acknowledgments

The technical and financial support of Ecole Centrale de Nantes/University of Nantes and Near East University are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, K. Nonlinear Static-Oriented Pushover Analysis of Reinforced Concrete Columns Using Variable Oblique Finite-Element Discretization. Int. J. Civ. Eng. 14, 295–306 (2016). https://doi.org/10.1007/s40999-016-0045-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-016-0045-y

Keywords

Navigation