Skip to main content

Advertisement

Log in

An Advanced Fault Detection Technique for DG Integrated Microgrid Using Fast Fourier Discrete Orthonormal Stockwell Transform-Based Hybrid Optimized Kernel Extreme Learning Machine

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

The proposed technique develops an intelligent protection scheme for multiple distributed generations (DGs) integrated microgrid systems. In this work, the retrieved fault current signal samples from the nearer faulty feeder are preprocessed through the fast Fourier discrete orthonormal Stockwell transform to obtain the spectral energy and differential energy. The normalized and prominent statistical differential energy features like maximum and minimum differential energy, entropy, standard deviation, mean, and median are calculated for analysis. The maximum and minimum values of differential energy are assessed to determine the severity of faults that can help in real-time applications. Further, these factors characterizing the fault type are considered as the input parameter to the hybrid approach as grey wolf optimization and particle swarm optimization-based kernel extreme learning machine algorithm for accurate fault detection. To justify the adaptability and usability of this method, this strategy is simulated under different types of faults like asymmetrical and symmetrical including different distance, fault inception angles, and fault resistance with different topologies like radial and looped configurations in both grid-connected and islanded modes of operation on a generalized IEC microgrid test system. The reliability and robustness of this methodology are examined by evaluating three parameters as accuracy, security, and dependability. Further, the comparative analysis and outcome of this work confirm the adaptability and superiority of this proposed method for the effective detection of a fault in the DGs-connected microgrid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adly AR, El Sehiemy RA, Elsadd MA, Abdelaziz AY (2019) A novel wavelet packet transform based fault identification procedures in HV transmission line based on current signals. Int J Appl 8(1):11–21

    Google Scholar 

  • Bisoi R, Dash PK, Das PP (2020) Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine. Neural Comput Appl 32(5):1457–1480

    Article  Google Scholar 

  • Cecati C, Razi K (2012) Fuzzy-logic-based high accurate fault classification of single and double-circuit power transmission lines. In: International symposium on power electronics power electronics, electrical drives, automation and motion. IEEE, pp 883–889

  • Chakravarty S, Dash PK (2012) A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Appl Soft Comput 12(2):931–941

    Article  Google Scholar 

  • Das D, Singh NK, Sinha AK (2006) A comparison of Fourier transform and wavelet transform methods for detection and classification of faults on transmission lines. In: 2006 IEEE power India conference. IEEE, p 7

  • Das B, Reddy JV (2005) Fuzzy-logic-based fault classification scheme for digital distance protection. IEEE Trans Power Deliv 20(2):609–616

    Article  Google Scholar 

  • Džakmic Š, Namas T, Džafić I (2017) Fault classification using multi-resolution analysis and discrete wavelet transforms. In: 2017 XXVI international conference on information, communication and automation technologies (ICAT). IEEE, pp 1–6

  • Girgis AA, Makram EB (1988) Application of adaptive Kalman filtering in fault classification, distance protection, and fault location using microprocessors. IEEE Trans Power Syst 3(1):301–309

    Article  Google Scholar 

  • Guo MF, Yang NC, Chen WF (2019) Deep-learning-based fault classification using Hilbert-Huang transform and convolutional neural network in power distribution systems. IEEE Sens J 19(16):6905–6913

    Article  Google Scholar 

  • Hardiansyah J, Yohannes MS (2012) Solving economic load dispatch problem using particle swarm optimization technique. IJ Intell Syst Appl 12:12–18

    Google Scholar 

  • Jain A (2013) Artificial neural network-based fault distance locator for double-circuit transmission lines. Adv Artif Intell 2013

  • Ju W, Wang Y, Del Rosso A (2019) Average wavelet energy-based method for fault classification in transmission lines. In: 2019 IEEE power & energy society innovative smart grid technologies conference (ISGT). IEEE, pp 1–5

  • Kar S, Samantaray SR, Zadeh MD (2015) Data-mining model based intelligent differential microgrid protection scheme. IEEE Syst J 11(2):1161–1169

    Article  Google Scholar 

  • Luo J, Chen H, Hu Z, Huang H, Wang P, Wang X, Wen C (2019) A new kernel extreme learning machine framework for somatization disorder diagnosis. IEEE Access 7:45512–45525

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mishra M, Rout PK (2017a) Detection and classification of micro-grid faults based on HHT and machine learning techniques. IET Gen Transm Distrib 12(2):388–397

    Article  Google Scholar 

  • Mishra M, Rout PK (2017b) A comprehensive micro-grid fault protection scheme based on S-transform and machine learning techniques. Int J Adv Mech Syst 7(5):274–289

    Google Scholar 

  • Mishra M, Panigrahi RR, Rout PK (2019) A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection. Ain Shams Eng J 10(2):307–318

    Article  Google Scholar 

  • Ray P, Panigrahi BK, Senroy N (2012) Extreme learning machine based fault classification in a series compensated transmission line. In: 2012 IEEE international conference on power electronics, drives and energy systems (PEDES). IEEE, pp 1–6

  • Ray P, Mishra DP (2016) Support vector machine based fault classification and location of a long transmission line. Eng Sci Technol Int J 19(3):1368–1380

    Google Scholar 

  • Sadinezhad I, Joorabian M (2008) A new adaptive hybrid neural network and fuzzy logic based fault classification approach for transmission lines protection. In: 2008 IEEE 2nd international power and energy conference. IEEE, pp 895–900

  • Sarangi S, Sahu BK, Rout PK (2020) Distributed generation hybrid AC/DC microgrid protection: a critical review on issues, strategies, and future directions. Int J Energy Res 44(5):3347–3364

    Article  Google Scholar 

  • Sarangi S, Sahu BK, Rout PK (2021b) A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction. Int J Energy Res 45(4):5006–5031

    Article  Google Scholar 

  • Sarangi S, Sahu BK, Rout PK (2021) Review of distributed generator integrated AC microgrid protection: issues, strategies, and future trends. Int J Energy Res

  • Sarangi S, Sahu BK, Rout PK (2021) An optimized machine learning-based time-frequency transform for protection of distribution generation integrated microgrid system. In: Green technology for smart city and society. Springer, Singapore, pp 385–399

  • Shahid N, Aleem SA, Naqvi IH, Zaffar N (2012) Support vector machine based fault detection & classification in smart grids. In: 2012 IEEE globecom workshops. IEEE, pp 1526–1531

  • Sharma S, Mehta S, Chopra N (2015) Economic load dispatch using grey wolf optimization. Int J Eng Res Appl 5(4):128–132

    Google Scholar 

  • Stadler M, Siddiqui A, Marnay C, Aki H, Lai J (2011) Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings. Eur Trans Electric Power 21(2):1291–1309

    Article  Google Scholar 

  • Stockwell R, Lalu Mansinha G, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44(4):998–1001

    Article  Google Scholar 

  • Tee W, Yusoff MR, Yaakub MF, Abdullah AR (2020) Voltage variations identification using Gabor transform and rule-based classification method. Int J Electric Comput Eng 2088–8708:10

    Google Scholar 

  • Upendar J, Gupta CP, Singh GK, Ramakrishna G (2010) PSO and ANN-based fault classification for protective relaying. IET Gen Transm Distrib 4(10):1197–1212

    Article  Google Scholar 

  • Vyas B, Maheshwari RP, Das B (2014) Investigation for improved artificial intelligence techniques for thyristor-controlled series-compensated transmission line fault classification with discrete wavelet packet entropy measures. Electric Power Comp Syst 42(6):554–566

    Article  Google Scholar 

  • Wang Y, Orchard J (2009) Fast discrete orthonormal Stockwell transform. SIAM J Sci Comput 31(5):4000–4012

    Article  MathSciNet  Google Scholar 

  • Yan Y, Zhu H (2011) The generalization of discrete stockwell transforms. In: 2011 19th European signal processing conference. IEEE, pp 1209–1213

  • Zhao Y, Yang L, Lehman B, de Palma JF, Mosesian J, Lyons R (2012) Decision tree-based fault detection and classification in solar photovoltaic arrays. In: 2012 twenty-seventh annual IEEE applied power electronics conference and exposition (APEC). IEEE, pp 93–99

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swetalina Sarangi.

Appendix

Appendix

  1. 1.

    Utility: rated voltage = 120 kV, f = 60 Hz, three-phase rated short-circuit = 1000 MVA, base voltage = 120 kV, X/R ratio = 10.

  2. 2.

    Transformers:

  3. TR_1: rated \({\text{MVA}} = 15\;{\text{MVA}}\), \(f = 60\;{\text{Hz}}\), rated \({\text{kV}} = 120\;{\text{kV / }}25\;{\text{kV}}\), \(R1\) = \(R2 = 0.00375\;{\text{pu}},\;L1 = L2 = 0.1\;{\text{pu}}\), \(R_{m}\) = \(500\;{\text{pu}}\), \(X_{m}\) = \(500\;{\text{pu}}\).

  4. TR_2 and TR_5: rated \({\text{MVA}} = 12\;{\text{MVA}}\), \(f = 60\;{\text{Hz}},\) rated \({\text{kV}} = 2.4\;{\text{kV/ }}25\;{\text{kV}}\), \(R1 = R2 = 0.00375\;{\text{pu}},\;L1 = L2 = 0.1\;{\text{pu}}\), \(R_{m}\) = \(500\;{\text{pu}}\), \(X_{m}\) = \(500\;{\text{pu}}\).

  5. TR_3: rated \({\text{MVA}} = 12\;{\text{MVA}}\), \(f = 60\;{\text{Hz}}\), rated \({\text{kV}} = 575 V/ 25\;{\text{kV}}\), \(R1 = R2 = 0.00375\;{\text{pu}},\;L1 = L2 = 0.00375\;{\text{pu}}\), \(R_{m}\) = \(500\;{\text{pu}}\), \(X_{m}\) = \(500\;{\text{pu}}\).

  6. TR_4: rated \({\text{MVA}} = 10\;{\text{MVA}}\), \(f = 60\;{\text{Hz}}\), rated \({\text{kV}} = 575 V{/ }25\;{\text{kV}}\), \(R1 = R2 = 0.00375\;{\text{pu}},\;L1 = L2 = 0.00375\;{\text{pu}}\), \(R_{m}\) = \(500\;{\text{pu}}\), \(X_{m}\) = \(500\;{\text{pu}}\).

  7. 3.

    Distribution Lines: DL-1, DL-2, DL-3, DL-4, DL-5: \(f = 60\;{\text{Hz}},\; r1 = 0.125\;\Omega {\text{/km}},\;r0 = 0.447\;\Omega {\text{/km}},\; l1 = 1.1e - 3\;{\text{H/km}},\; l0 = 3.47e - 3\;{\text{H/km}},\; c1 = 10.1766e - 9\;{\text{F/km}},\;c0 = 4.5e - 9\;{\text{F/km}}\), Line length = 30 km each.

  8. 4.

    Loads: L-1, L-2, L-3, L-4, L-5, L-6: rated voltage = \(25\;{\text{kV}}\), \(f = 60\;{\text{Hz}}\), Total active power = \(24\;{\text{MW}}\), Total inductive reactive power = \(12\;{\text{MVAR}}\).

  9. 5.

    Distributed Generation:

  10. DG1, DG4: (Synchronous generator) rated \({\text{MVA}} = 9\;{\text{MVA}}\), rated voltage = \(2.4\;{\text{kV}}\), \(f\) = \(60\;{\text{Hz}}\), \(X_{d}\) = \(1.56\;{\text{pu}}\), \(X_{d}^{^{\prime}}\) = \(0.296\;{\text{pu}}\), \(X_{d}^{^{\prime\prime}}\) = \(0.177\;{\text{pu}}\), \(X_{q}\) = \(1.06\;{\text{pu}}\), \(X_{q}^{^{\prime\prime}}\) = \(0.177\;{\text{pu}}\), \(X_{l}\) = \(0.052\;{\text{pu}}\), \(T_{d}^{^{\prime}}\) = \(3.7s\), \(T_{d}^{^{\prime\prime}}\) = \(0.05s\), \(T_{qo}^{^{\prime\prime}}\) = \(0.05s\), \(R_{s}\) = \(0.0036\;{\text{pu}}\), \(H\) = \(1.07s\), \(F\) = \(0.1\;{\text{pu}}\), \(p\) = \(2\).

  11. DG2: (Synchronous generator and full-scale converter (Type 4) detailed model wind farm) rated \({\text{MVA}} = 6\;{\text{MVA}}\), rated voltage = 575 kV, f = 60 Hz, \(X_{d} = 1.305\;{\text{pu}}\), \(X_{d}^{^{\prime}}\) = \(0.296\;{\text{pu}}\), \(X_{d}^{^{\prime\prime}}\) = \(0.252\;{\text{pu}}\), \(X_{q}\) = \(0.474\;{\text{pu}}\), \(X_{q}^{^{\prime\prime}}\) = \(0.243\;{\text{pu}}\), \(X_{l}\) = \(0.18\;{\text{pu}}\), \(T_{do}^{^{\prime}}\) = \(4.49s\), \(T_{do}^{^{\prime\prime}}\) = \(0.0681s\), \(T_{q}^{^{\prime\prime}}\) = \(0.0513s\), \(R_{s}\) = \(0.006\;{\text{pu}}\), \(H\) = \(0.62 s, F = 0.1, p = 1\)

  12. DG3: (DFIG-based wind farm) rated \({\text{MVA}} = 9\;{\text{MVA}}\), rated voltage = \(575\;{\text{kV}}\), \(f = 60 \;{\text{Hz}}\), \(R_{s}\) = \(0.023\;{\text{pu}}\), \({\text{Lls}} = 0.18\;{\text{pu}}\), \(Rr^{\prime } = 0.0016\;{\text{pu}}\), \({\text{Llr}}^{\prime } = 0.16\;{\text{pu}}\), \(L_{m}\) = \(2.9\;{\text{pu}}\), \(H = 0.685 s, \;F = 0.01, \;p = 3\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, S., Sahu, B.K. & Rout, P.K. An Advanced Fault Detection Technique for DG Integrated Microgrid Using Fast Fourier Discrete Orthonormal Stockwell Transform-Based Hybrid Optimized Kernel Extreme Learning Machine. Iran J Sci Technol Trans Electr Eng 46, 329–351 (2022). https://doi.org/10.1007/s40998-022-00481-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-022-00481-w

Keywords

Navigation