Skip to main content
Log in

Design and Implementation of a Real-Time Nonlinear Model Predictive Controller for a Lower Limb Exoskeleton with Input Saturation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear model predictive controller (NMPC) with input saturation is designed and modified for a rehabilitative exoskeleton for paraplegic individuals. An analytical solution for the NMPC optimization problem is obtained for small prediction horizons (\(N < 3\)). Additionally, an iterative solution for longer horizon problems (\(N \ge 3\)) is performed by employing the linear time-varying approach and using the active set method to include the constraints. Real-time guarantee for the implementation of both NMPC solutions is derived, and the robustness and stability of the closed-loop system are discussed. Finally, the proposed controller is successfully simulated and implemented on a real exoskeleton robot with 1 ms sampling time. The results show that the proposed controller is more effective than PID and adaptive fuzzy controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas MA, Milman R, Eklund JM (2017) Obstacle avoidance in real time with Nonlinear Model Predictive Control of autonomous vehicles. Can J Electr Comput Eng 40(1):12–22

    Google Scholar 

  • Ali A, Ahmed SF, Joyo MK, Kushsairy K (2017) MPC-PID comparison for controlling therapeutic upper limb rehabilitation robot under perturbed conditions. In: 3rd International conference on engineering technologies and social sciences (ICETSS), No. 978-1-5386-1611-6. IEEE, pp 1–5

  • Allan DA, Bates CN, Risbeck MJ, Rawlings JB (2017) On the inherent robustness of optimal and suboptimal nonlinear MPC. Syst Control Lett 106:68–78

    Article  MathSciNet  Google Scholar 

  • Amir-B.D A, Tahamipour-Z SM, Akbarzadeh A (2019) Adaptive tracking control based on GFHM for a reconfigurable lower limb exoskeleton. In: Presented at the 7th international conference on robotics and mechatronics (ICROM), Tehran

  • Bovi G, Rabuffetti M, Mazzoleni P, Ferrarin M (2011) A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1):6–13

    Article  Google Scholar 

  • Brahmi B, Saad M, Ochoa-Luna C, Rahman MH, Brahmi A (2018) Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control. IEEE/ASME Trans Mechatron 23(2):575–585

    Article  Google Scholar 

  • Buesing C et al (2015) Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil 12(1):69

    Article  Google Scholar 

  • Cao Y-Y, Lin Z (2005) Min-max MPC algorithm for LPV systems subject to input saturation. IEE Proc Control Theory Appl 152(3):266–272

    Article  Google Scholar 

  • Cao J, Xie SQ, Das R (2018) MIMO sliding mode controller for gait exoskeleton driven by pneumatic muscles. IEEE Trans Control Syst Technol 26(1):274–281

    Article  Google Scholar 

  • Cestari M, Sanz-Merodio D, Arevalo JC, Garcia E (2014) ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton. Ind Robot Int J 41(6):518–526

    Article  Google Scholar 

  • Chen Y, Li ZG, Kong H, Ke F (2018) Model predictive tracking control of nonholonomic mobile robots with coupled input constraints and unknown dynamics. IEEE Trans Ind Inform 15:1–10

  • Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921

    Article  Google Scholar 

  • Falcone P, Borrelli F, Tseng HE, Asgari J, Hrovat D (2008) Linear time-varying model predictive control and its application to active steering systems: stability analysis and experimental validation. Int J Robust Nonlinear Control IFAC Affil J 18(8):862–875

    Article  MathSciNet  Google Scholar 

  • Faulwasser T, Weber T, Zometa P, Findeisen R (2017) Implementation of nonlinear model predictive path-following control for an industrial robot. IEEE Trans Control Syst Technol 25(4):1505–1511

    Article  Google Scholar 

  • Fernández DC, Hollinger GA (2017) Model predictive control for underwater robots in ocean waves. IEEE Robot Autom Lett 2(1):88–95

    Article  Google Scholar 

  • Guo L, Gao B, Liu Q, Tang J, Chen H (2017) On-line optimal control of the gearshift command for multispeed electric vehicles. IEEE/ASME Trans Mechatron 22(4):1519–1530

    Article  Google Scholar 

  • Jarrett C, McDaid A (2017) Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans Neural Syst Rehabil Eng 25(7):976–986

    Article  Google Scholar 

  • Kawamoto H, et al (2010) Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia. In: Annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 462–466

  • Kazerooni H, Racine J-L, Huang L, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: International conference on robotics and automation (ICRA). IEEE, pp 4353–4360

  • Li Z, Deng J, Lu R, Xu Y, Bai J, Su C-Y (2016) Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Trans Syst Man Cybern Syst 46(6):740–749

    Article  Google Scholar 

  • Magni L, Scattolini R (2007) Robustness and robust design of MPC for nonlinear discrete-time systems. In: Assessment and future directions of nonlinear model predictive control. Springer, pp 239–254

  • Mayne DQ, Seron MM, Raković S (2005) Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2):219–224

    Article  MathSciNet  Google Scholar 

  • Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “ABLE” for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4):372–380

    Article  Google Scholar 

  • O’Dwyer A (2009) Handbook of PI and PID controller tuning rules. Imperial College Press, London

    Book  Google Scholar 

  • Riani A, Madani T, Benallegue A, Djouani K (2018) Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Eng Pract 75:108–117

    Article  Google Scholar 

  • Rodriguez CA, Ponce P, Molina A (2017) ANFIS and MPC controllers for a reconfigurable lower limb exoskeleton. Soft Comput 21(3):571–584

    Article  Google Scholar 

  • Salazar M, Balerna C, Elbert P, Grando FP, Onder CH (2017) Real-time control algorithms for a hybrid electric race car using a two-level model predictive control scheme. IEEE Trans Veh Technol 66(12):10911–10922

    Article  Google Scholar 

  • Sankai Y (2010) HAL: Hybrid assistive limb based on cybernics. In: Robotics research, vol 66. Springer, pp 25–34

  • Sastry S (2013) Nonlinear systems: analysis, stability, and control. Springer, Berlin, p 668

    Google Scholar 

  • Siampis E, Velenis E, Gariuolo S, Longo S (2017) A real-time nonlinear model predictive control strategy for stabilization of an electric vehicle at the limits of handling. IEEE Trans Control Syst Technol 26(6):1982–1994

    Article  Google Scholar 

  • Song D, Han J, Liu G (2013) Active model-based predictive control and experimental investigation on unmanned helicopters in full flight envelope. IEEE Trans Control Syst Technol 21(4):1502–1509

    Article  Google Scholar 

  • Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4911–4916

  • Sun Z, Dai L, Xia Y, Liu K (2018) Event-based model predictive tracking control of nonholonomic systems with coupled input constraint and bounded disturbances. IEEE Trans Autom Control 63(2):608–615

    Article  MathSciNet  Google Scholar 

  • Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv Robot 21(12):1441–1469

    Article  Google Scholar 

  • Taghirad HD (2013) Parallel robots: mechanics and control. CRC Press, Boca Raton

    Book  Google Scholar 

  • Tahamipour-Z S, Sani SH, Akbarzadeh A, Kardan I (2018) An assistive strategy for compliantly actuated exoskeletons using non-linear model predictive control method. In: Iranian conference on electrical engineering (ICEE). IEEE, pp 982–987

  • Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Article  Google Scholar 

  • Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 4(03):487–506

    Article  Google Scholar 

  • Wang L (2009) Model predictive control system design and implementation using MATLAB®. Springer, Berlin, p 378

    Google Scholar 

  • Wang L, van Asseldonk EH, van der Kooij H (2011) Model predictive control-based gait pattern generation for wearable exoskeletons. In: International conference on rehabilitation robotics (ICORR). IEEE, pp 1–6

  • Wu Q, Wang X, Chen B, Wu H (2018) Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 53:85–94

    Article  Google Scholar 

  • Yang Y, Huang D, Dong X (2019) Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning. Neurocomputing 323:256–264

    Article  Google Scholar 

  • Young AJ, Ferris DP (2017) State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng 25(2):171–182

    Article  Google Scholar 

  • Yu S, Reble M, Chen H, Allgöwer F (2014) Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control. Automatica 50(9):2269–2280

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Ferdowsi University of Mashhad Robotics Lab for their kind participation and cooperation.

Funding

This research is supported by grant #101120 from the Ferdowsi University of Mashhad-Iran as well as grant #962297 from the National Institute for Medical Research Development of Iran. This research is also supported by the National Elites Foundation of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kamal Hosseini Sani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahamipour Zarandi, S., Hosseini Sani, S., Akbarzadeh Tootoonchi, M.R. et al. Design and Implementation of a Real-Time Nonlinear Model Predictive Controller for a Lower Limb Exoskeleton with Input Saturation. Iran J Sci Technol Trans Electr Eng 45, 309–320 (2021). https://doi.org/10.1007/s40998-020-00358-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-020-00358-w

Keywords

Navigation