Skip to main content
Log in

Two MRAC Designs for the MEMS-Based AC Voltage Reference Source

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents two well-known designs of model reference adaptive control (MRAC) based on state and output feedback, to control microelectromechanical system AC voltage reference source (MEMS AC VRS). The best performance of AC voltage reference is achieved when the movable plate of MEMS capacitor is located and stayed under the pull-in point. This study proposes two MRAC schemes to place the movable plate near the pull-in point in the presence of parameter uncertainties. Moreover, the asymptotic stability of the closed-loop system is guaranteed by the Lyapunov theory and Barbalat’s Lemma. Finally, simulation results verify the effectiveness of theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari U, Bajodah AH (2018) Adaptive fuzzy sliding mode control: application to satellite launch vehicle’s attitude control. Mechatron Syst Control (Former Control Intell Syst) 46(1):15–25

    MathSciNet  Google Scholar 

  • Blard F, Bounouh A, Bélières D, Camon H (2011) Very high stability achievement in MEMS based AC voltage references. In: 2011 IEEE 24th international conference on micro electro mechanical systems, pp 656–659

  • Bounouh A, Camon H, Bélières D, Blard F, Ziadé F (2011) MEMS AC voltage reference for miniaturized instrumentation and metrology. In: Computer standards and interfaces, xVI IMEKO TC4 symposium exploring new frontiers of instrumentation and methods for electrical and electronic measurements” and XIII international workshop on ADC modelling and testing vol 33(2), pp 159–164

  • Che LF, Xiong B, Li YF, Wang YL (2009) A novel electrostatic-driven tuning fork micromachined gyroscope with a bar structure operating at atmospheric pressure. J Micromech Microeng 20:015025

    Article  Google Scholar 

  • Dierikx EF (2007) A mems-stabilized AC voltage reference source. IEEE Trans Instrum Meas 56(2):313–315

    Article  Google Scholar 

  • Kärkkäinen A, Oja A, Kyynäräinen J, Kuisma H, Seppä H (2004) Stability of electrostatic actuation of MEMS. Phys Scr 2004(T114):193

    Article  Google Scholar 

  • Kärkkäinen A, Pesonen N, Suhonen M, Oja AS, Manninen A, Tisnek N, Seppa H (2005) Mems-based AC voltage reference. IEEE Trans Instrum Meas 54(2):595–599

    Article  Google Scholar 

  • Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Mehrnezhad A, Suratgar AA, Khatami S, Sobhiyeh S (2013) A mathematical dynamic model for static and dynamic behaviours of mems-based AC voltage reference source. In: 2013 21st Iranian conference on electrical engineering (ICEE), pp 1–5

  • Meyer KR (1965) On the existence of lyapunov function for the problem of lur’e. J Soc Ind Appl Math Ser A Control 3(3):373–383. https://doi.org/10.1137/0303025

    Article  MATH  Google Scholar 

  • Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice-Hall Inc, Upper Saddle River

    MATH  Google Scholar 

  • Park S, Horowitz R (2003) Adaptive control for the conventional mode of operation of MEMS gyroscopes. J Microelectromech Syst 12(1):101–108

    Article  Google Scholar 

  • Popov VM (1973) Hyperstability of control systems. Springer, New York

    Book  Google Scholar 

  • Ranjbar E, Mehrnezhad A, Suratgar AA (2017) Adaptive sliding mode control of MEMS AC voltage reference source. J Control Sci Eng 2017:14

    Article  MathSciNet  Google Scholar 

  • Ranjbar E, Mehrnezhad A, Suratgar AA, Khatami S (2014) Adaptive control of mems-based AC voltage reference source. In: 2014 22nd Iranian conference on electrical engineering (ICEE), pp 1336–1341

  • Rocha LA, Cretu E, Wolffenbuttel RF (2004) Analysis and analytical modeling of static pull-in with application to mems-based voltage reference and process monitoring. J Microelectromech Syst 13(2):342–354

    Article  Google Scholar 

  • Seppa H, Kyynarainen J, Oja A (2001) Microelectromechanical systems in electrical metrology. IEEE Trans Instrum Meas 50(2):440–444

    Article  Google Scholar 

  • Shirazi FA, Velni JM, Grigoriadis KM (2011) An LPV design approach for voltage control of an electrostatic MEMS actuator. J Microelectromech Syst 20(1):302–311

    Article  Google Scholar 

  • Suhonen M, Seppa H, Oja AS, Heinila M, Nakki I (1998) AC and DC voltage standards based on silicon micromechanics. In: 1998 conference on precision electromagnetic measurements digest (Cat. No.98CH36254), pp 23–24

  • Suratgar AA, Hashemipoor SS, Hoseini H (2009) Noise effect reduction on a mems-based AC voltage reference source using artificial neural network. In: 2009 2nd IEEE international conference on computer science and information technology, pp 179–183

  • Sze S (1981) Physics of semiconductor devices, Wiley-Interscience publication. Wiley, Hoboken

    Google Scholar 

  • Trusov AA, Schofield AR, Shkel AM (2008) A substrate energy dissipation mechanism in in-phase and anti-phase micromachined z-axis vibratory gyroscopes. J Micromech Microeng 18(9):095016

    Article  Google Scholar 

  • Welikala S, Liyanage D, Abeysekara AD, Ekanayake MPB, Godaliyadda RI, Wijayakulasooriya JV (2016) Control strategy for navigation of a reconnaissance robotic system. Control Intell Syst. https://doi.org/10.2316/journal.201.2016.3.201-2761

    Article  Google Scholar 

  • Zhou C, Zhao X, Yu Q (2018) Adaptive robust control for active suspension system using t-s fuzzy model approach. Mechatron Syst Control (Former Control Intell Syst) 46(2):46–54

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Farzanegan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzanegan, B., Niafar, E., Ranjbar, E. et al. Two MRAC Designs for the MEMS-Based AC Voltage Reference Source. Iran J Sci Technol Trans Electr Eng 43, 773–784 (2019). https://doi.org/10.1007/s40998-019-00205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00205-7

Keywords

Navigation