Skip to main content

Advertisement

Log in

Model Reference Adaptive System-Based Sensorless Speed Control of Grid-Connected Doubly Fed Induction Generator in Wind Energy Conversion System

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a speed sensorless method for the vector control of grid-connected doubly fed induction generator (DFIG) in wind energy conversion system. The sensorless method is based on the model reference adaptive system (MRAS) which utilizes instantaneous and steady-state values of a fictitious ohmic quantity (R), respectively. The dimension of this fictitious quantity is ohm (Ω) that has no physical significance. The sensorless scheme, R-MRAS does not require any estimation of flux and is also independent of stator/rotor resistances. A detailed simulation study, in this regard, is done in MATLAB/Simulink. The simulated results are also verified experimentally by a dSPACE-1103-based DFIG-DC machine laboratory prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(v_{\mathrm{ds}} ,v_{\mathrm{qs}}\),\(v_{\text{dr}} ,v_{\text{qr}}\) :

dq-axis components of stator and rotor voltage vector (V)

\(v_{\text{abs}} ,v_{\text{bcs}}\) :

Stator line–line voltages (V)

\(i_{\text{ds}} ,i_{\text{qs}}\), \(i_{\text{dr}} ,i_{\text{qr}}\) :

dq-axis components of stator and rotor current vector (A)

\(i_{\text{as}} ,i_{\text{bs}}\)(\(i_{\text{ar}} ,i_{\text{br}}\)):

Stator (rotor) line currents (A)

\(\omega_{\text{r}} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\omega }_{\text{r}}\) :

Actual, estimated rotor speed (rad/s)

\(\omega_{\text{ms}}\) :

Speed of stator flux (rad/s)

\(R_{\text{r}} ,R_{\text{s}}\) :

Rotor, stator resistances (Ω)

\(L_{\text{r}} ,L_{\text{s}} ,L_{\text{m}}\) :

Rotor self-inductance, stator self-inductance, magnetizing inductance (H)

\(\sigma = 1 - L_{\text{m}}^{2} /\left( {L_{\text{s}} L_{\text{r}} } \right)\) :

Machine leakage factor

\(p\) :

\({{\text{d}} \mathord{\left/ {\vphantom {{\text{d}} {{\text{d}}t}}} \right. \kern-0pt} {{\text{d}}t}}\)’ operator

^,*, superscript \(s\) :

Estimated, reference and stationary quantities

\(\theta_{\text{ms}} ,\theta_{\text{sl}}\) :

Stator flux position and slip angle (elect. rad)

References

  • Abad G, Rodriguez MA, Iwanski G, Poza J (2010) Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage. IEEE Trans Power Electron 25(2):442–452

    Article  Google Scholar 

  • Abad G et al (2011) Doubly fed induction machine: modelling and control for wind energy generation. Wiley-IEEE Press, Piscataway

    Book  Google Scholar 

  • Abdelrahem M, Hackl C, Kennel R (2015) Sensorless control of doubly-fed induction generator in variable-speed wind turbine system. In: International conference on clean electrical power (ICCEP), Taormina, Italy, pp 406–415

  • Alonge F, D’Ippolito F, Sferlazza A (2014) Sensorless control of induction-motor drive based on robust Kalman filter and adaptive speed estimation. IEEE Trans Ind Electron 61(3):1444–1453

    Article  Google Scholar 

  • Cardenas R et al (2004) MRAS observer for doubly fed induction machines. IEEE Trans Energy Convers 19(2):467–468

    Article  MathSciNet  Google Scholar 

  • Cardenas R et al (2008) MRAS observers for sensorless control of doubly fed induction generators. IEEE Trans Power Electron 23(3):1075–1084

    Article  Google Scholar 

  • Datta R, Ranganathan VT (2001) A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine. IEEE Trans Ind Electron 48(4):786–793

    Article  Google Scholar 

  • Datta R, Ranganathan VT (2002) Variable-speed wind power generation using doubly fed wound rotor induction machine—a comparison with alternative schemes. IEEE Trans Energy Convers 17(3):414–421

    Article  Google Scholar 

  • Forchetti DG, Garcia GO, Valla MI (2009) Adaptive observer for sensorless control of stand-alone doubly fed induction generator. IEEE Trans Ind Electron 56(10):4174–4180

    Article  Google Scholar 

  • Joselin Herbert GM, Iniyan S, Amutha D (2014) A review of technical issues on the development of wind farms. Renew Sustain Energy Rev 32:619–641

    Article  Google Scholar 

  • Konstantinov M, Wei G, Mehrmann V, Petko P (2003) Perturbation theory for matrix equations (studies in computational mathematics). Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kumar R, Das S (2016) Eigenvalue-based relative parameter sensitivity analysis for optimised performance of sensorless induction motor drives. IET Electric Power Appl 10(8):723–724

    Article  Google Scholar 

  • Kumar R, Das S (2017) MRAS-based speed estimation of grid-connected doubly fed induction machine drive. IET Power Electron 10(7):726–737

    Article  Google Scholar 

  • Marques GD, Sousa DM (2012) New sensorless rotor position estimator of a DFIG based on torque calculations—stability study. IEEE Trans Energy Convers 27(1):196–203

    Article  Google Scholar 

  • Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator system for wind turbine. IEEE Ind Appl Mag 8(3):26–33

    Article  Google Scholar 

  • Nian H, Cheng P, Zhu Z (2015) Direct power control of doubly fed induction generator without phase-locked loop in synchronous reference frame during frequency variation. IET Renew Power Gener 9(6):576–586

    Article  Google Scholar 

  • Ovando, R. I., Aguayo, J. & Cotorogea, M. (2007) Emulation of a low power wind turbine with a DC motor in Matlab/Simulink. In: IEEE power electronics specialist conference, Orlando, FL, pp 859–864

  • Pattnaik M, Kastha D (2010) Reactive power based MRAS observer for speed sensorless control of double output induction generator. In: Proceedings of the international conference on industrial and information systems, NIT Surathkal, India, pp 556–561

  • Pattnaik M, Kastha D (2012) Adaptive speed observer for a stand-alone doubly fed induction generator feeding nonlinear and unbalanced loads. IEEE Trans Energy Convers 27(4):1018–1026

    Article  Google Scholar 

  • Pena R, Clare JC, Asher GM (1996) Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation. IEE Proc Electr Power Appl 143(3):231–241

    Article  Google Scholar 

  • Pena R et al (2008) Sensorless control of doubly-fed induction generators using rotor- current-based MRAS observer. IEEE Trans Ind Electron 55(1):330–339

    Article  Google Scholar 

  • Rashed M, Stronach A (2004) A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation. Proc Inst Electr Eng Electr Power Appl 151(6):685–693

    Article  Google Scholar 

  • Reigosa DD, Briz F, Blanco C, Guerrero M (2014) Sensorless control of doubly fed induction generators based on stator high-frequency signal injection. IEEE Trans Ind Appl 50(5):3382–3391

    Article  Google Scholar 

  • Rudraraju VRR, Chilakapati N, Illango GS (2015) A stator voltage switching strategy for efficient low speed operation of DFIG using fractional rated converters. Renew Energy 81:389–399

    Article  Google Scholar 

  • Swami Naidu NK, Singh B (2014) Sensorless control of single voltage source converter-based doubly fed induction generator for variable speed wind energy conversion system. IET Power Electron 7(12):2996–3006

    Article  Google Scholar 

  • Tagare DM (2011) Electric power generation the changing dimensions. IEEE Press, Piscataway

    Book  Google Scholar 

  • Teja AV, Chakraborty C, Maiti S, Hori Y (2012) A new model reference adaptive controller for four quadrant vector induction motor drives. IEEE Trans Ind Electron 59(10):3757–3767

    Article  Google Scholar 

  • Verma V, Maiti S, Chakraborty C (2010) Grid-connected vector-controlled slip-ring induction motor drive without speed sensor. Simul Model Pract Theory 18(7):984–997

    Article  Google Scholar 

  • Wilkinson JH (1988) The algebraic eigenvalue problem. Oxford University Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar.

Appendix

Appendix

See Tables 2, 3 and 4.

Table 2 DFIM parameters for the proposed study
Table 3 DC machine (separately excited) parameters
Table 4 Controller parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Das, S. Model Reference Adaptive System-Based Sensorless Speed Control of Grid-Connected Doubly Fed Induction Generator in Wind Energy Conversion System. Iran J Sci Technol Trans Electr Eng 44, 129–140 (2020). https://doi.org/10.1007/s40998-019-00196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00196-5

Keywords

Navigation