Skip to main content
Log in

Improvement of Power Systems Stability Using a New Learning Algorithm Based on Lyapunov Theory for Neural Network

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new learning algorithm based on Lyapunov stability theory for neural networks is used to improve the power system stability. During the online control process, the identification of system is not necessary, because of learning ability of the proposed controller. One of the proposed controller features is robustness to different operating conditions and disturbances. Moreover, the Prony method is used to obtain the exponential damping of power system oscillations in this paper. The test power systems are a two-area four-machine power system and IEEE 39-bus power system. The simulation results show that the oscillations are satisfactorily damped out by the proposed approach. The proposed approach is effective to mitigate power system oscillations and improve the stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Magid YL, Abido MA (2003) Optimal multiobjective design of robust power system stabilizers using genetic algorithms. IEEE Trans Power Syst 18(3):1125–1132

    Article  Google Scholar 

  • Abido MA (2000) Robust design of multimachine power system stabilizers using simulated annealing. IEEE Trans Energy Convers 15(3):297–304

    Article  Google Scholar 

  • Avdakovic S, Nuhanovic A, Kusljugic M, Music M (2012) Fuzzy transform applications in power system dynamics. Electr Power Syst Res 83(1):237–245

    Article  Google Scholar 

  • Barton Z (2004) Robust control in a multimachine power system using adaptive neuro-fuzzy stabilisers. IEE Proc Gener Transm Distrib 151(2):261–267

    Article  Google Scholar 

  • Bevrani H, Hiyama T, Bevra H (2011) Robust PID based power system stabiliser: design and real-time implementation. Int J Electr Power Energy Syst 33(2):179–188

    Article  Google Scholar 

  • El-Zonkoly AM, Khalil AA, Ahmied NM (2009) Optimal tuning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization. Expert Syst Appl 36(2):2097–2106

    Article  Google Scholar 

  • Farahani M (2013a) Intelligent control of SVC using wavelet neural network to enhance transient stability. Eng Appl Artif Intell 26(1):273–280

    Article  MathSciNet  Google Scholar 

  • Farahani M (2013b) A multi-objective power system stabilizer. IEEE Trans Power Syst 28(3):2700–2707

    Article  MathSciNet  Google Scholar 

  • Ganjefar S, Alizadeh M (2012) A novel adaptive power system stabilizer design using the self-recurrent wavelet neural networks via adaptive learning rates. Eur Trans Electr Power. doi:10.1002/etep.1616

    Google Scholar 

  • Hardiansyah FS, Furuya S, Irisawa J (2006) A robust H power system stabilizer design using reduced-order models. Electr Power Energy Syst 28:21–28 (No. 1)

    Article  Google Scholar 

  • Hauer JF, Demeure CJ, Scharf LL (1990) Initial results in Prony analysis of power system response signals. IEEE Trans Power Syst 5(1):80–89

    Article  Google Scholar 

  • Hsu YY, Liou KL (1987) Design of self-tuning PID power system stabilizers for synchronous generators. IEEE Trans Energy Convers EC-2:343–348 (No. 3)

    Article  Google Scholar 

  • Hussein T, Saad MS, Elshafei AL, Bahgat A (2010) Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer. Electr Power Syst Res 80(12):1428–1436

    Article  Google Scholar 

  • Jabr RA, Pal BC, Martins N, Ferraz JCR (2010) Robust and coordinated tuning of power system stabiliser gains using sequential linear programming. IET Gener Transm Distrib 4:893–904 (No. 8)

    Article  Google Scholar 

  • Karrari M, Malik OP (2005) Identification of synchronous generators using adaptive fuzzy networks. Int J Electr Power Energy Syst 27(2):113–120

    Article  Google Scholar 

  • Klein M, Rogers GJ, Moorty S, Kundur P (1992) Analytical investigation of factors influencing PSS performance. IEEE Trans Energy Convers 7(3):382–390

    Article  Google Scholar 

  • Kundur P (1994) Power system stability and control. McGraw Hill, New York

    Google Scholar 

  • Liu W, Venayagamoorthy GK, Wunsch DC (2003) Design of an adaptive neural network based power system stabilizer. Neural Netw 16(5–6):891–898

    Article  Google Scholar 

  • Mishra S, Tripathy M, Nanda J (2007) Multi-machine power system stabilizer design by rule based bacteria foraging. Electr Power Syst Res 77(12):1595–1607

    Article  Google Scholar 

  • Mostafa HE, El-Sharkawy MA, Emary AA, Yassin K (2012) Design and allocation of power system stabilizers using the particle swarm optimization technique for an interconnected power system. Int J Electr Power Energy Syst 34(1):57–65

    Article  Google Scholar 

  • Panda S (2009) Multi-objective evolutionary algorithm for SSSC-based controller design. Electr Power Syst Res 79(6):937–944

    Article  Google Scholar 

  • Segal R, Sharma A, Kothari ML (2004) A self-tuning power system stabilizer based on artificial neural network. Electr Power Energy Syst 26(6):423–430

    Article  Google Scholar 

  • Shamsollahi P, Malik OP (1999) An application of neural adaptive power system stabilizer in a multi-machine power system. IEEE Trans Energy Convers 14(3):731–736

    Article  Google Scholar 

  • Shamsollahi P, Malik OP (2000) Design of a neural adaptive power system stabilizer using dynamic back-propagation method. Electr Power Energy Syst 22:29–34

    Article  Google Scholar 

  • Shayeghi H, Shayanfar HA, Jalilzadeh S, Safari A (2010) Multi-machine power system stabilizers design using chaotic optimization algorithm. Energy Convers Manage 51:1572–1580

    Article  Google Scholar 

  • Wai RJ, Chang JM (2002) Intelligent control of induction servo motor drive via fuzzy neural network. Electr Power Syst Res 61:67–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Farahani.

Appendices

Appendices

1.1 Appendix A

The parameters used for the conventional PSS (CPSS) [22]:

  • Gain: K p  = 30,

  • washout time constant: T W  = 10.

  • Lead-lag #1time constant: T 1 = 0.05, T 2 = 0.02.

  • Lead-lag #2time constant: T 1 = 3, T 2 = 5.4.

1.2 Appendix B

Choose the following candidate of Lyapunov function:

$$V\left( k \right) = \beta^{k} e^{2} \left( k \right),$$
(10)

where β is a positive constant and β > 1. The difference between V(k) and V(k  1) is then given by

$$\begin{aligned} \Delta V\left( k \right) = V\left( k \right) - V\left( {k - 1} \right) \hfill \\ =\, \beta^{k} e^{2} \left( k \right) - \beta^{k - 1} e^{2} \left( {k - 1} \right) \hfill \\ =\, \beta^{k} \left( {y\left( k \right) - d\left( k \right)} \right)^{2} - \beta^{k - 1} e^{2} \left( {k - 1} \right) \hfill \\ =\, \beta^{k} \left( {\sum\limits_{j = 1}^{n} {w_{1,j}^{(2,1)} \left( k \right)H_{j} \left( k \right)} - d\left( k \right)} \right)^{2} - \beta^{k - 1} e^{2} \left( {k - 1} \right) \hfill \\ \end{aligned}$$
(11)

Using (5) and (6) in (11), we have

$$\begin{aligned} \Delta V\left( k \right) = \, \beta^{k} \left( {\sum\limits_{j = 1}^{n} {w_{1,j}^{(2,1)} \left( k \right)F_{j} \left( {\sum\limits_{i = 1}^{n} {w_{j,i}^{{\left( {1,0} \right)}} \left( k \right)x_{i} \left( k \right)} } \right)} - d\left( k \right)} \right)^{2} - \beta^{k - 1} e^{2} \left( {k - 1} \right) \hfill \\ \, = \beta^{k} \left( {\sum\limits_{j = 1}^{n} {w_{1,j}^{(2,1)} \left( k \right)F_{j} \left( {\sum\limits_{i = 1}^{n} {\frac{1}{{nx_{i} \left( k \right)}}G_{j} \left( {\frac{{\beta^{{\frac{ - k}{2}}} e\left( {k - 1} \right) + d\left( k \right)}}{{nw_{1,j}^{{\left( {2,1} \right)}} \left( k \right)}}} \right)x_{i} \left( k \right)} } \right)} - d\left( k \right)} \right)^{2} - \beta^{k - 1} e^{2} \left( {k - 1} \right) \hfill \\ \, = - \left( {\beta^{k - 1} - 1} \right)e^{2} \left( {k - 1} \right) \prec 0 \hfill \\ \end{aligned}$$
(12)

Therefore, according to Lyapunov stability theory, the tracking error e(k) asymptotically converges to zero.

Appendix C

$$\begin{aligned} e\left( k \right) & = y\left( k \right) - d\left( k \right) \\ & = \sum\limits_{j = 1}^{n} {w_{1,j}^{{\left( {2,1} \right)}} H_{j} \left( k \right) - d\left( k \right)} \\ & = \sum\limits_{j = 1}^{n} {w_{1,j}^{(2,1)} \left( k \right)F_{j} \left( {\sum\limits_{i = 1}^{n} {\frac{1}{{nx_{i} \left( k \right)}}G_{j} \left( {\frac{{\beta^{{\frac{ - k}{2}}} e\left( {k - 1} \right) + d\left( k \right)}}{{nw_{1,j}^{{\left( {2,1} \right)}} \left( k \right)}}} \right)x_{i} \left( k \right)} } \right)} - d\left( k \right) \\ & = \beta^{{ - \frac{k}{2}}} e\left( {k - 1} \right) \\ \end{aligned}$$
(13)

It is noted that

$$\begin{aligned} e\left( 1 \right) = \beta^{{ - \frac{1}{2}}} e\left( 0 \right) \hfill \\ e\left( 2 \right) = \beta^{{ - \frac{2}{2}}} e\left( 1 \right) = \beta^{{ - \frac{1 + 2}{2}}} e\left( 0 \right) \hfill \\ e\left( 3 \right) = \beta^{{ - \frac{3}{2}}} e\left( 2 \right) = \beta^{{ - \frac{1 + 2 + 3}{2}}} e\left( 0 \right) \hfill \\ \vdots \hfill \\ e\left( k \right) = \beta^{{ - \frac{k}{2}}} e\left( {k - 1} \right) = \beta^{{ - \frac{1 + 2 + 3 + \cdots + k}{2}}} e\left( 0 \right) \hfill \\ \, = \beta^{{ - \frac{{\left( {1 + k} \right)k}}{4}}} e\left( 0 \right). \hfill \\ \end{aligned}$$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadegh, M.A., Farahani, M. Improvement of Power Systems Stability Using a New Learning Algorithm Based on Lyapunov Theory for Neural Network. Iran J Sci Technol Trans Electr Eng 41, 293–303 (2017). https://doi.org/10.1007/s40998-017-0031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0031-7

Keywords

Navigation