Skip to main content
Log in

Nonlinear Dynamic Response of an Abruptly Loaded Rubber-Like Hyperelastic Plate Resting on a Dissipative Viscoelastic Winkler–Pasternak Medium

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Sometimes, the engineering layers and living tissues may be modeled as hyperelastic plates resting on dissipative viscoelastic foundations featuring shear tractions at the contact surfaces. In this paper, the damped forced vibration and lateral deflections of thin neo-Hookean hyperelastic plates with various edge supports and Winkler–Pasternak viscoelastic foundations are studied under step and harmonic dynamic distributed loads. Using Hamilton’s principle, von Kármán’s assumptions, and classical plate theory, the governing equations of motion are obtained. Then, the combination of the motion equations and boundary conditions is solved by the iterative 2D differential quadrature and Newmark methods. The influence of the thickness and aspect ratio of the plate, shear stiffness and damping parameters of the viscoelastic foundation, type of edge conditions, the constitutive parameters of the hyperelastic material, the magnitude of the distributed load, and the excitation frequency on the resulting dynamic lateral deflections, dissipation manner of the vibration, and performance of the structure are studied. Furthermore, results show that the linearization errors are significant for larger loads and looser boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13.
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alibakhshi A, Dastjerdi S, Malikan M, Eremeyev VA (2021) Nonlinear free and forced vibrations of a hyperelastic micro/nanobeam considering strain stiffening effect. Nanomaterials 11(11):3066

    Article  Google Scholar 

  • Ansari R, Hassani R, Faraji Oskouie M, Rouhi H (2021) Nonlinear bending analysis of hyperelastic mindlin plates: a numerical approach. Acta Mech 232:741–760

    Article  MathSciNet  MATH  Google Scholar 

  • Attard MM, Hunt GW (2004) Hyperelastic constitutive modeling under finite strain. Int J Solids Struct 41:5327–5350

    Article  MATH  Google Scholar 

  • Bower AF (2010) Applied mechanics of solids. CRC Press, London

    Google Scholar 

  • Breslavsky I, Amabili M, Legrand M (2014a) Nonlinear vibrations of thin hyperelastic plates. J Sound Vib 333:4668–4681

    Article  Google Scholar 

  • Breslavsky I, Amabili M, Legrand M (2014b) Physically and geometrically non-linear vibrations of thin rectangular plates. Int J Non-Lin Mech 58:30–40

    Article  Google Scholar 

  • Du P, Dai HH, Wang J, Wang Q (2020) Analytical study on growth-induced bending deformations of multi-layered hyperelastic plates. Int J Non-Lin Mech 119:103370

    Article  Google Scholar 

  • Estermann SJ, Pahr DH, Reisinger A (2020) Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain. J Mech Behavior Biomed Mater 112:104038

    Article  Google Scholar 

  • Forsat M (2020) Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method. Acta Mech 231:125–138

    Article  MathSciNet  MATH  Google Scholar 

  • Fung YC, Tong P, Chen X (2017) Classical, and computational solid mechanics. World Scientific Publishing Co Pte Ltd, Singapore

    Book  MATH  Google Scholar 

  • Gent AN (2012) Engineering with rubber: how to design rubber components, 3rd edn. Hanser Publishers, Munich

    Book  Google Scholar 

  • Ghorbanpour Arani A, Khani Arani H, Khoddami Maraghi Z (2016) Vibration analysis of sandwich composite micro-plate under electro-magneto-mechanical loadings. Appl Math Model 40:10596–10615

    Article  MathSciNet  MATH  Google Scholar 

  • Ghorbanpour Arani A, Khani Arani H, Khoddami Maraghi Z (2017) Size-dependent in vibration analysis of magnetostrictive sandwich composite micro-plate in a magnetic field using modified couple stress theory. J Sandw Struct Mater 21:580–603

    Article  MATH  Google Scholar 

  • Liang C, Wang YQ (2020) A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on the viscoelastic foundation. Compos Struct 247:112478

    Article  Google Scholar 

  • Malikan M, Eremeyev VA (2021) Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis. Compos Struct 271:114179

    Article  Google Scholar 

  • Malikan M, Sadraee Far M (2018) Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory. J Appl Comput Mech 4(3):147–160

    Google Scholar 

  • Malikan M, Nguyen VB, Tornabene F (2018) Damped forced vibration analysis of single-walled carbon nanotubes resting on the viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng Sci Technol Int J 21:778–786

    Google Scholar 

  • Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79:835–858

    Article  Google Scholar 

  • Mirjavadi SS, Forsat M, Nikookar M, Barati MR, Hamouda AMS (2019) Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets. Eur Phys J plus 134(10):508

    Article  Google Scholar 

  • Mirjavadi SS, Forsat M, Badnava S (2020a) Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models. Biomech Model Mechanobiol 19(3):971–983

    Article  Google Scholar 

  • Mirjavadi SS, Khan I, Forsat M, Barati MR, Hamouda AMS (2020b) Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution. Mech Based Des Struct Mach 1–17. https://doi.org/10.1080/15397734.2020.1841654

  • Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  • Ogden RW (1972) Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326:565–584

    MATH  Google Scholar 

  • Ogden RW (1997) Non-linear elastic deformations. Courier Corp, New York

    Google Scholar 

  • Reddy JN (2004) Energy principles and variational methods in applied mechanics. Wiley, New York

    Google Scholar 

  • Rivlin R, Saunders D (1948) A critical study of the Hopkinson pressure bar. Philos Trans R Soc Lond Ser A Math Phys Sci 240:509–525

    Google Scholar 

  • Shariyat M, Khani Arani H (2022) Dynamic behavior of heterogeneous neo-Hookean/Mooney–Rivlin plates reinforced nonuniformly by hyperelastic inclusions: proposing the correct micromechanical model. J Vib Control. https://doi.org/10.1177/10775463211067300

    Article  Google Scholar 

  • Shariyat M, Khosravi M, Yazdani Ariatapeh M, Najafpour M (2020) Nonlinear stress and deformation analysis of pressurized thick-walled hyperelastic cylinders with experimental verifications and material identifications. Int J Press Vessels Pip 188:104211

    Article  Google Scholar 

  • Sharma S (2003) Critical comparison of popular hyper-elastic material models in design of anti-vibration mounts for automotive industry through FEA. In: Busfield J, Muhr A (eds) Constitutive Models for Rubber III. A.A Balkema Publishers, Netherlands, pp 161–168

    Google Scholar 

  • Soares RM, Gonçalves PB (2018) Nonlinear vibrations of a rectangular hyperelastic membrane resting on a nonlinear elastic foundation. Meccanica 53:937–955

    Article  MathSciNet  MATH  Google Scholar 

  • Shu C (2000) Differential quadrature and its application in engineering. Springer, Singapore

    Book  MATH  Google Scholar 

  • Treloar L (1943) The elasticity of a network of long-chain molecules—II. Trans Faraday Soc 39:241–246

    Article  Google Scholar 

  • Tripathi S, Bajaj AK (2016) Topology optimization and internal resonances in transverse vibrations of hyperelastic plates. Int J Solids Struct 81:311–328

    Article  Google Scholar 

  • Upadhyay K, Subhash G, Spearot D (2020) Hyperelastic constitutive modeling of hydrogels based on primary deformation modes and validation under 3D stress states. Int J Eng Sci 154:103314

    Article  MATH  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shariyat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Substituting Eqs. (15), and (18) to (20) into Eq. (21) and setting the expressions multiplied by \(\delta u\text{,} \delta v,\) and \(\delta w\) equal to zero, the following motion equations may be obtained:

$$4h{\mu }_{1}\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}+\frac{1}{4}h{\mu }_{1}\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}+\frac{9}{4}h{\mu }_{1}\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial Y\partial X}+\frac{9}{4}h{\mu }_{1}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial Y\partial X}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}+\frac{1}{4}h{\mu }_{1}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}+4h{\mu }_{1}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}-\rho h\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial {t}^{2}}=0$$
$$\frac{9}{4}h{\mu }_{1}\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial Y\partial X}+4h{\mu }_{1}\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}+\frac{1}{4}h{\mu }_{1}\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}+\frac{1}{4}h{\mu }_{1}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}+\frac{9}{4}h{\mu }_{1}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial Y\partial X}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}+4h{\mu }_{1}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}-\rho h\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial {t}^{2}}=0$$
$$-\frac{1}{3}{h}^{3}{\mu }_{1}\frac{{\partial }^{4}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{4}}-\frac{5}{12}{h}^{3}{\mu }_{1}\frac{{\partial }^{4}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}\partial {X}^{2}}-\frac{1}{3}{h}^{3}{\mu }_{1}\frac{{\partial }^{4}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{4}}+5h{\mu }_{1}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial X\partial Y}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}+\frac{9}{4}h{\mu }_{1}\left[\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial X\partial Y}+\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial Y\partial X}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}\right]+\frac{1}{2}h{\mu }_{1}\left[\frac{\partial {v}_{0}\left(X,Y,t\right)}{\partial X}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial X\partial Y}+\frac{\partial {u}_{0}\left(X,Y,t\right)}{\partial Y}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial Y\partial X}\right]+\frac{1}{4}h{\mu }_{1}\left[\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}+\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}\right]+4h{\mu }_{1}\left[\frac{{\partial }^{2}{v}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}+\frac{\partial {v}_{0}\left(X,Y,t\right)}{\partial Y}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}\right]+2h{\mu }_{1}\frac{\partial {u}_{0}\left(X,Y,t\right)}{\partial X}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}+4h{\mu }_{1}\frac{{\partial }^{2}{u}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}+4h{\mu }_{1}\frac{\partial {u}_{0}\left(X,Y,t\right)}{\partial X}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}+2h{\mu }_{1}\frac{\partial {v}_{0}\left(X,Y,t\right)}{\partial Y}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}+\frac{5}{4}h{\mu }_{1}\left[{\left(\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}\right)}^{2}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}+{\left(\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}\right)}^{2}\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}\right]+6h{\mu }_{1}\left[\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}{\left(\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial X}\right)}^{2}+\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}{\left(\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial Y}\right)}^{2}\right]+{K}_{g}\left[\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}}+\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}}\right]-{K}_{w}{w}_{0}\left(X,Y,t\right)+{C}_{d}\frac{\partial {w}_{0}\left(X,Y,t\right)}{\partial t}-\rho h\frac{{\partial }^{2}{w}_{0}\left(X,Y,t\right)}{\partial {t}^{2}}+\frac{1}{12}\rho {h}^{3}\left[\frac{{\partial }^{4}{w}_{0}\left(X,Y,t\right)}{\partial {X}^{2}\partial {t}^{2}}+\frac{{\partial }^{4}{w}_{0}\left(X,Y,t\right)}{\partial {Y}^{2}\partial {t}^{2}}\right]=F\left(X,Y,t\right)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arani, H.K., Shariyat, M. Nonlinear Dynamic Response of an Abruptly Loaded Rubber-Like Hyperelastic Plate Resting on a Dissipative Viscoelastic Winkler–Pasternak Medium. Iran J Sci Technol Trans Mech Eng 47, 219–236 (2023). https://doi.org/10.1007/s40997-022-00512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-022-00512-1

Keywords

Navigation