Skip to main content
Log in

Influence of Geometry and Magnetic Field on Convective Flow of Nanofluids in Trapezoidal Microchannel Heat Sink

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The objective of the numerical study is to explore the effects of transverse magnetic field on heat transfer and fluid flow characteristics in a trapezoidal microchannel heat sink. The effects of the channel bottom width, channel top width, channel height and Hartmann number on heat transfer and fluid flow characteristics are widely investigated. In addition, effects of nanoparticles type (Al2O3, SiO2, CuO, ZnO), base fluid type (water and ethylene glycol) and its concentration (0–4%) under the influence of magnetic field are also investigated. The governing equations for three-dimensional steady, laminar flow and conjugate heat transfer of a microchannel are solved using the finite volume method. The acquired results are discussed in detail. The results reveal that the magnetic field can increase the thermal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B o :

Magnetic field strength

C p :

Heat capacity (J/kg k)

D :

Channel depth (m)

D h :

Hydraulic diameter (2WchD/Wch + D) (m)

f :

Friction factor (f = 2ΔPD/ρV2L)

h :

Heat transfer coefficient (W/m2. K)

Ha:

Hartmann number (BoDh(σ/µ)1/2)

k :

Thermal conductivity (W/m K)

L :

Channel length

M :

Molecular weight (mol)

N :

Avogadro number

Nu:

Nusselt number (Nu = hDh/k)

P :

Pressure (Pa)

Re:

Reynolds number (Re = ρVDh/µ)

T :

Temperature (K)

V :

Velocity (m/s)

W :

Total channel width

W ch :

Channel width

κ :

Boltzmann constant

σ :

Electrical conductivity (S/m)

ρ :

Density (kg/m3)

μ :

Dynamic viscosity (kg m/s)

Ø :

Volume fraction of nanoparticle

ch:

Channel

top:

Top

bottom:

Bottom

bf:

Base fluid

eff:

Effective

nf:

Nanofluid

np:

Nanoparticle

References

  • Abdollahi A, Mohammed HA, Vanaki ShM, Osia A, Haghighi MRG (2017a) Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alex Eng J 56(1):161–170

    Article  Google Scholar 

  • Abdollahi A, Sharma RN, Mohammed HA, Vatani A (2017b) Heat transfer and flow analysis AL2O3-Water nanofluids in interrupted microchannel heat sink with ellipse and diamond ribs in the transverse microchambers. Heat Transf Eng 23:1–9

    Google Scholar 

  • Ambatipudi KK, Rahman MM (2000) Analysis of conjugate heat transfer in microchannel heat sinks. Numer Heat Transf Part A 37:711–731

    Article  Google Scholar 

  • Aminossadati SM, Raisi A, Ghasemi B (2011) Effects of magnetic field on nanofluid forced convection in partially heated microchannel. Int J Non-Linear Mech 46:1373–1382

    Article  Google Scholar 

  • Back LH (1968) Laminar heat transfer in electrically conducting fluids flowing in parallel plate channels. Int J Heat Mass Transf 11(11):1621–1636

    Article  Google Scholar 

  • Biswal L, Chakraborty S, Som SK (2009) Design and optimization of single-phase liquid cooled microchannel heat sink. Compon Packag Technol IEEE Trans 32(4):876–886

    Article  Google Scholar 

  • Chen CS, Lee SM, Sheu JD (1998) Numerical analysis of gas flow in microchannels. Numer Heat Transf Part A 33(7):749–762

    Article  Google Scholar 

  • Corcione M (2010) Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci 49:1536–1546

    Article  Google Scholar 

  • Ghasemi B, Aminossadati AM (2010) Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int J Therm Sci 49:931–940

    Article  Google Scholar 

  • Hamdan MA, AlAssaf AH, AlNimr MA (2016) The effect of slip velocity and temperature jump on the hydrodynamic and thermal behaviors of MHD forced convection flows in horizontal microchannels. Iran J Sci Technol Trans Mech Eng 40(2):95–103

    Article  Google Scholar 

  • Hong ZC, Chen CE, Yang CY (2008) Fluid dynamics and heat transfer analysis of three dimensional microchannel flows with microstructures. Numer Heat Transf Part A 54(3):293–314

    Article  Google Scholar 

  • Hung TC, Yan WM (2012) Optimization of a microchannel heat sink with varying channel heights and widths. Numer Heat Transf Part A 62:722–741

    Article  Google Scholar 

  • Kalteh M, Abedinzadeh SS (2018) Numerical investigation of MHD nanofluid forced convection in a microchannel using lattice Boltzmann method. Iran J Sci Technol Trans Mech Eng 42:23–34

    Article  Google Scholar 

  • Mchale JP, Garimella SV (2010) Heat transfer in trapezoidal microchannels of various aspect ratios. Int J Heat Mass Transf 53:365–375

    Article  Google Scholar 

  • Mohammed HA, Narrein K (2012) Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger. Int Commun Heat Mass Transf 39:1375–1383

    Article  Google Scholar 

  • Narrein K, Sivasankaran S, Ganesan P (2016a) Influence of transverse magnetic field on microchannel heat sink performance. J Appl Fluid Mech 9(6):3159–3166

    Article  Google Scholar 

  • Narrein K, Sivasankaran S, Ganesan P (2016b) Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel. Numer Heat Transf A 69(8):921–930

    Article  Google Scholar 

  • Niazmand H, Renksizbulut M, Saeedi E (2008) Developing slip-flow and heat transfer in trapezoidal microchannels. Int J Heat Mass Transf 51:6126–6135

    Article  Google Scholar 

  • Pfahler J, Harley J, Bau H, Zemel J (1990a) Liquid transport in micron and submicron channels. Sens Actuators 22:431–434

    Article  Google Scholar 

  • Pfahler J, Harley J, Bau HH, Zemel J (1990b) Liquid and gas transport in small channels. ASME DSC 19:149–157

    Google Scholar 

  • Phillips RJ (1990) Microchannel heat sinks (Chap. 3). In: Bar-Cohen A, Kraus AD (eds) Advances in thermal modeling of electronic components and systems, Hemisphere Publishing Corporation, New York

  • Qu W, Mala GM, Li D (2000) Heat transfer for water flow in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:3925–3936

    Article  Google Scholar 

  • Quan X, Dong L, Cheng P (2010) Determination of annular condensation heat transfer coefficient of steam in microchannels with trapezoidal cross sections. Int J Heat Mass Transf 53:3670–3676

    Article  Google Scholar 

  • Sivasankaran S, Narrein K (2016) Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel filled with a porous medium. Int Commun Heat Mass Transf 75:86–91

    Article  Google Scholar 

  • Steinke ME, Kandlikar SG (2006) Single-phase liquid friction factors in microchannels. Int J Therm Sci 45:1073–1083

    Article  Google Scholar 

  • Sun L, Oosthuizen PH, McAule KB (2006) A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape. Int J Heat Mass Transf 45:1021–1026

    Google Scholar 

  • Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett EDL 2:126–129

    Article  Google Scholar 

  • Tuckerman DB, Pease RFW (1998) Ultrahigh thermal conductance microstructures for cooling integrated circuits. In: Proceedings of 32nd electronic components conference pp 145–149

  • Vajjha RSV, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52:4675–4682

    Article  Google Scholar 

  • Vajjha RSV, Das DK, Kulkarni DP (2010) Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf 53:4607–4618

    Article  Google Scholar 

  • Weilin Qu, Mala GM, Dongqing L (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364

    Article  Google Scholar 

  • Wu HY, Cheng P (2003) Friction factors in smooth trapezoidal silicon microchannels with difference aspect ratios. Int J Heat Mass Transf 46:2519–2525

    Article  Google Scholar 

  • Xia G, Chai L, Wang H, Zhou M, Cui Z (2011) Optimum thermal design of microchannel heat sink with triangular re-entrant cavities. Appl Therm Eng 31:1208–1219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivasankaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasankaran, S., Narrein, K. Influence of Geometry and Magnetic Field on Convective Flow of Nanofluids in Trapezoidal Microchannel Heat Sink. Iran J Sci Technol Trans Mech Eng 44, 373–382 (2020). https://doi.org/10.1007/s40997-018-0258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0258-6

Keywords

Navigation