Skip to main content
Log in

Numerical Investigation of Laminar Forced Convection and Entropy Generation of Nanofluid in a Confined Impinging Slot Jet Using Two-Phase Mixture Model

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this article, computational fluid dynamics (CFD) simulations is used to investigate the volumetric entropy generation and heat transfer on confined impinging slot jet, with a mixture of water and Al2O3 nanoparticles as working fluid. The flow is laminar and a constant temperature is applied on the impingement surface. The governing mass and momentum equations for mixture and dispersed phase and also energy equation for mixture are solved using the finite volume method. This paper studies the effects of different geometric parameters, particle volume concentration and Reynolds number on local and average Nusselt number, stagnation point Nusselt number, entropy generation and stream function contours. The results showed that the intensity and size of the vortex structures depend on jet-to-impingement surface distance ratio (H/W), Reynolds number and particle concentrations. As H/W ratio increases, average and stagnation point Nusselt number decrease due to flow instability. By increasing Reynolds number and volume concentration, average Nusselt number and exergy loss increase due to stretching of the vortex structure in downstream direction. From the CFD results, it is found that a substantial portion of entropy generation occurs at stagnation and wall jet regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\overline{C}_{\text{f}}\) :

Average skin friction coefficient

\(c_{\text{p}}\) :

Constant pressure-specific heat, J/kgK

H :

Channel height, m

H :

Convective heat transfer coefficient, W/(m2k)

d p :

Particle diameter, m

dV :

Volume element, m3

K :

Thermal conductivity, W/mk

Nu :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

SG C :

Volumetric entropy generation due to heat conduction and convection, W m−3 K−1

SG F :

Volumetric entropy generation due to fluid friction, W m−3 K−1

\(\mathop {SG_{\text{C}} }\limits^{ \bullet }\) :

Entropy generation due to heat conduction and convection, W K−1

\(\mathop {SG_{\text{F}} }\limits^{ \bullet }\) :

Entropy generation due to fluid friction, W K−1

\(\mathop {SG}\limits^{ \bullet }\) :

Total entropy generation, W K−1

T :

Temperature, K

T b :

Bulk temperature, K

T 0 :

Ambient temperature, K − 293 K

\(\vec{V}(u,\nu )\) :

Velocity vector, m/s

U, v :

Velocity components along x, y axes, respectively, m/s

W :

Jet width, m

X, Y :

Spatial coordinates, m

\(\phi\) :

Volume fraction of nanoparticles

\(\mu\) :

Dynamic viscosity, Pa s

Α :

Thermal diffusivity

ρ :

Density, kg/m3

\(\tau\) :

Wall shear stress, Pa

\(\dot{\psi }\) :

Exergy loss, W

ave:

Average at the inlet

f:

Fluid

C:

Continuous phase

jet:

Refers to the reference (inlet) condition

K:

k-th phase

m:

Mixture

nf:

Nanofluid properties

p:

Nanoparticles

stg:

Stagnation point

w:

Wall

References

  • Akbarinia A, Behzadmehr A (2008) Numerical study of laminar mixed convection of a nanofluid in horizontal tube using two-phase mixture model. Appl Therm Eng 28:717–727

    Article  Google Scholar 

  • Akbarinia A, Laur R (2009) Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach. Int J Heat Fluid Flow 30:706–713

    Article  Google Scholar 

  • Behzadmehr A, Saffar-Avval M, Galanis N (2007) Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow 28:211–219

    Article  Google Scholar 

  • Bejan A (1987) The thrmodynamic design of heat and mass transfer processes device. Int J Heat Fluid Flow 4:258–276

    Article  Google Scholar 

  • Chen M, Chalupa R, West AC, Modi V (2000) High Schmidt mass transfer in a laminar impinging slot jet flow. Int J Heat Mass Transf 43:3907–3915

    Article  MATH  Google Scholar 

  • Chen YC, Ma CF, Qin M, Li YX (2005) Theoretical study on impingement heat transfer with single-phase free-surface slot jets. Int J Heat Mass Transf 48:3381–3386

    Article  MATH  Google Scholar 

  • Chiriac VC, Ortega A (2002) A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface. Int J Heat Mass Transf 45:1237–1248

    Article  MATH  Google Scholar 

  • Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 85:153107–153110

    Article  Google Scholar 

  • Fard MH, Esfahany MN, Talaie MR (2010) Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int Commun Heat Mass Transf 37:91–97

    Article  Google Scholar 

  • Ishii M, Shihibiki T Thermo-Fluid Dynamics of two- phase flow, Springer Science Business Media, Inc, 223 spring, street, New York, NY 10013, USA

  • Kurowski L, Chmiel-Kurowska K, Thullie J (2009) Numerical simulation of heat transfer in nanofluids. Comput Aided Chem Eng 26:967–972

    Article  Google Scholar 

  • Lee DH, Song J, Jo MC (2004) The effects of nozzle diameter on impinging jet heat transfer and fluid flow. J Heat Transf 126(4):554–557

    Article  Google Scholar 

  • Lee HG, Yoon HS, Ha MY (2008) A numerical investigation on the fluid flow and heat transfer in the confined impinging slot jet in the low Reynolds number region for different channel height. Int J Heat Mass Transf 51:4055–4068

    Article  MATH  Google Scholar 

  • Lee DH, Park HJ, Ligrani P (2012) Milliscale confined impinging slot jets: laminar heat transfer characteristics for an isothermal flat plate. Int J Heat Mass Transf 55:2249–2260

    Article  Google Scholar 

  • Lomascolo M, Colangelo G, Milanese M, Risi AD (2015) Review of heat transfer in nanofluids: conductive, convective and radiative experimental results. Renew Sustain Energy Rev 43:1182–1198

    Article  Google Scholar 

  • Lotfi R, Saboohi Y, Rashidi AM (2010) Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int J Heat Mass Transf 37:74–78

    Article  Google Scholar 

  • Mahian O, Mahmud S, Heris SZ (2012) Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids. J Heat Transf 134:101704

    Article  Google Scholar 

  • Maninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. Technical Research Center of Finland, pp. VTT Publication 288, p. 67, Espo 1996

  • Masoumi N, Sohrabi N, Behzadmehr AA (2009) New model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:055501–055506

    Article  Google Scholar 

  • Nguyen CT, Galanis N, Polidori G, Fohanno S, Popa CV, Le Bechec A (2009) An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid. Int J Therm Sci 48:401–411

    Article  Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  • Rahgoshay M, Ranjbar AA, Ramiar A (2012) Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. Int Commun Heat Mass Transf 39:463–469

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD (2017) Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater Des 120:382–393

    Article  Google Scholar 

  • Sheikholeslami Kandelousi M (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378:3331–3339

    Article  MATH  Google Scholar 

  • Shuja SZ, Yilbasa BS, Budaira MO (2007) Jet impingement onto a cylindrical cavity: consideration of annular nozzle cone angles, and cavity diameter. Int J Comput Fluid Dyn 19:483–492

    Article  Google Scholar 

  • Vaziei P, Abouali O (2009) Numerical study of fluid flow and heat transfer for Al2O3-water nanofluid impinging jet. In: Proceedings of the 7th international conference on nanochannels, microchannels and minichannels, pp 22–24

  • Yousefi-Lafouraki B, Ramiar A (2013) Laminar forced convection of a confined slot impinging jet in a converging channel. Int J Therm Sci 77:130–138

    Article  Google Scholar 

  • Yousefi-Lafouraki B, Ramiar A, Mohsenian S (2016) Entropy generation analysis of a confined slot impinging jet in a converging channel for a shear thinning nanofluid. Appl Therm Eng 105:675–685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Yousefi-Lafouraki or Abas Ramiar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi-Lafouraki, B., Ramiar, A. & Ranjbar, A.A. Numerical Investigation of Laminar Forced Convection and Entropy Generation of Nanofluid in a Confined Impinging Slot Jet Using Two-Phase Mixture Model. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 165–179 (2019). https://doi.org/10.1007/s40997-018-0147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0147-z

Keywords

Navigation