Skip to main content
Log in

A Review of Different Assessment Methods of Corrosion of Steel Reinforcement in Concrete

  • Review Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Steel reinforcement corrosion is known to adversely affect the structural integrity of buildings, bridges and other reinforced concrete (RC) structures. It reduces the durability and service life of structures causing its premature failure. Early and effective detection of corrosion can help to limit the extent of necessary repairs. Hence, the assessment of reinforcement corrosion has significant importance. There are many corrosion assessment techniques that have been used in recent years. Each of these methods offers some merits and demerits. This paper categorizes these techniques into three different groups and reviews the techniques in two groups in a schematic way from the point of view of monitoring corrosion in RC structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas Y, ten Have B, GnI H, Douma A, de Bruijn D, Olthuis W, van den Berg A (2015) Connecting to concrete: Wireless monitoring of chloride ions in concrete structures. Procedia Eng 120:965–968

    Google Scholar 

  • Abdelrahman M, ElBatanouny MK, Ziehl P, Fasl J, Larosche CJ, Fraczek J (2015) Classification of alkali–silica reaction damage using acoustic emission: a proof-of-concept study. Constr Build Mater 95:406–413

    Google Scholar 

  • Ahmad S (2003) Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review. Cem Concr Compos 25:459–471

    Google Scholar 

  • Alcantara Jr NPD, Gonçalves Jr L (2015) Simulation of an ECT Sensor to inspect the reinforcement of concrete structures. COMSOL Conference

  • Alcantara NPD Jr, Da Silva FM, Guimarães MT, Pereira MD (2016) Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing. Sensors 16(1):15

    Google Scholar 

  • Alcantara Jr NPD (2013) Identification of steel bars immersed in reinforced concrete based on experimental results of eddy current testing and artificial neural network analysis. Nondestruct Test Eval 28(1):58–71

    Google Scholar 

  • Al-Hadhrami LM, Maslehuddin M, Shameem M, Ali MR (2012) Assessing concrete density using infrared thermographic (IRT) images. Infrared Phys Technol 55(5):442–448

    Google Scholar 

  • Andrade C, Martinez I (2009) Embedded sensors for the monitoring of corrosion parameters in concrete structures. In: Proceedings of the 7th International Symposium on Non-destructive Testing in Civil Engineering, Nantes, France

  • Annan AP (2009) Electromagnetic principles of ground penetrating radar. In: Jol HM (ed) Ground penetrating radar: theory and applications, 1st edn. Elsevier, Amsterdam, Netherlands, pp 4–40

  • Assouli B, Simescu F, Debicki G, Idrissi H (2005) Detection and identification of concrete cracking during corrosion of reinforced concrete by acoustic emission coupled to the electrochemical techniques. NDT & E Int 38(8):682–689

    Google Scholar 

  • Badr J, Fargier Y, Palma-Lopes S, Deby F, Balayssac JP, Delepine-Lesoille S, Cottineau LM, Villain G (2019) Design and validation of a multi-electrode embedded sensor to monitor resistivity profiles over depth in concrete. Constr Build Mater 223:310–321

    Google Scholar 

  • Baek S, Xue W, Feng MQ, Kwon S (2012) Nondestructive corrosion detection in RC through integrated heat induction and IR thermography. J Nondestruct Eval 31(2):181–190

    Google Scholar 

  • Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring–a review. Infrared Phys Technol 60:35–55

    Google Scholar 

  • Barnes CL, Trottier JF, Forgeron D (2008) Improved concrete bridge deck evaluation using GPR by accounting for signal depth–amplitude effects. NDT & E Int 41(6):427–433

    Google Scholar 

  • Barroca N, Borges LM, Velez FJ, Monteiro F, Górski M, Castro-Gomes J (2013) Wireless sensor networks for temperature and humidity monitoring within concrete structures. Constr Build Mater 40:1156–1166

    Google Scholar 

  • Bäßler R, Burkert A, Isecke B (2007) Electrochemical devices for determination of corrosion related values for reinforced concrete structures. In: NACE International Corrosion Conference Series

  • Beck M, Goebbels J, Burkert A, Isecke B, Bäßler R (2010) Monitoring of corrosion processes in chloride contaminated mortar by electrochemical measurements and X-ray tomography. Mater Corros 61(6):475–4479

    Google Scholar 

  • Benedetti MD, Loreto G, Matta F, Nanni A (2013) Acoustic emission monitoring of reinforced concrete under accelerated corrosion. J Mater Civ Eng 25(8):1022–1029

    Google Scholar 

  • Benedetti MD, Loreto G, Matta F, Nanni A (2014) Acoustic emission historic index and frequency spectrum of reinforced concrete under accelerated corrosion. J Mater Civ Eng 26(9):1–8

    Google Scholar 

  • Berriman J, Gan TH, Hitchins DA, Purnell P (2003) Non-contact ultrasonic interrogation of concrete. In: Proceedings of the International Symposium on NDT in Civil Engineering, Berlin

  • Berrocal CG, Lundgren K, Löfgren I (2016) Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: state of the art. Cem Concr Res 80:69–85

    Google Scholar 

  • Boateng E, Danso KA, Dagadu CPK (2013) Non-destructive evaluation of corrosion on insulated pipe using tangential radiographic technique. IJSTR 2(6):7–13

    Google Scholar 

  • Bungey JH (2004) Sub-surface radar testing of concrete: a review. Constr Build Mater 18(1):1–8

    Google Scholar 

  • Büyüköztürk O (1998) Imaging of concrete structures. NDT & E Int 31(4):233–243

    Google Scholar 

  • Cairns J, Du Y, Law D (2006) Residual bond strength of corroded plain round bars. Mag Concr Res 58(4):221–231

    Google Scholar 

  • Calabrese L, Campanella G, Proverbio E (2012) Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete. Constr Build Mater 34:362–371

    Google Scholar 

  • Carpinteri A, Lacidogna G, Niccolini G (2011) Damage analysis of reinforced concrete buildings by the acoustic emission technique. Struct Control Heal Monit 18(6):660–673

    Google Scholar 

  • Česen A, Kosec T, Legat A (2013) Characterization of steel corrosion in mortar by various electrochemical and physical techniques. Corros Sci 75:47–57

    Google Scholar 

  • Chang CW, Lin CH, Lien HS (2009) Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr Build Mater 23(2):1057–1063

    Google Scholar 

  • Chen W, Dong X (2012) Modification of the wavelength-strain coefficient of FBG for the prediction of steel bar corrosion embedded in concrete. Opt Fiber Technol 18(1):47–50

    Google Scholar 

  • Chen Y, Tang F, Tang Y, O’Keefe MJ, Chen G (2017) Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures. Corros Sci 127:70–81

    Google Scholar 

  • Cheng CC, Cheng TM, Chiang CH (2008) Defect detection of concrete structures using both infrared thermography and elastic waves. Automat Constr 18(1):87–92

    Google Scholar 

  • Chung L, Paik IK, Roh YS (2004) Non-destructive evaluation techniques of reinforcing steel corrosion using infrared thermography. Key Eng Mater 270–273:1592–1597

    Google Scholar 

  • Chung L, Paik IK, Cho SH, Roh YS (2006) Infrared thermographic technique to measure corrosion in reinforcing bar. Key Eng Mater 321–323:821–824

    Google Scholar 

  • Clark MR, McCann DM, Forde MC (2003) Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT & E Int 36(4):265–275

    Google Scholar 

  • Concu G, Trulli N (2018) Concrete defects sizing by means of ultrasonic velocity maps. Buildings 8(12):176

    Google Scholar 

  • Cui J, Huston D R, Arndt R (2011) Early detection of concrete bridge deck corrosion using ground penetrating radar, half-cell potential and anode ladder. Transportation Research Board 90th Annual Meeting, Washington DC

  • Dong SG, Lin CJ, Hu RG, Li LQ, Du RG (2011) Effective monitoring of corrosion in reinforcing steel in concrete constructions by a multifunctional sensor. Electrochim Acta 56(4):1881–1888

    Google Scholar 

  • Dong B, Fang G, Liu Y, Dong P, Zhang J, Xing F, Hong S (2017) Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method. Cem Concr Res 100:311–321

    Google Scholar 

  • Duffó GS, Farina SB (2009) Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures. Constr Build Mater 23(8):2746–2751

    Google Scholar 

  • Duffó G, Gaillard N, Mariscotti M, Ruffolo M (2015) Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar. Cem Concr Res 74:1–9

    Google Scholar 

  • Ebell G, Burkert A, Fischer J, Lehmann J, Müller T, Meinel D, Paetsch O (2016) Investigation of chloride-induced pitting corrosion of steel in concrete with innovative methods. Mater Corros 67(6):583–590

    Google Scholar 

  • Elfergani HA, Pullin R, Holford KM (2013) Damage assessment of corrosion in prestressed concrete by acoustic emission. Constr Build Mater 40:925–933

    Google Scholar 

  • Farrag S, Yehia S, Qaddoumi N (2016) Investigation of mix-variation effect on defect-detection ability using infrared thermography as a nondestructive evaluation technique. J Bridge Eng 21(3):04015055

    Google Scholar 

  • Frankowski PK (2018) Corrosion detection and measurement using eddy current method. In: International Interdisciplinary PhD Workshop (IIPhDW), IEEE, pp 398–400

  • Galati N, Nanni A, Gustavo Tumialan J, Ziehl PH (2008) In-situ evaluation of two concrete slab systems. I: Load determination and loading procedure. J Perform Constr Facil. 22(4):207–216

    Google Scholar 

  • Gao J, Wu J, Li J, Zhao X (2011) Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDT & E Int 44(2):202–205

    Google Scholar 

  • Ghods P, Isgor OB, Bensebaa F, Kingston D (2012) Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution. Corros Sci 58:159–167

    Google Scholar 

  • Goyal A, Pouya HS, Ganjian E, Claisse P (2018) A review of corrosion and protection of steel in concrete. Arab J Sci Eng 43(10):5035–5055

    Google Scholar 

  • Grosse CU, Reinhardt HW, Finck F (2003) Signal-based acoustic emission techniques in civil engineering. J Mater Civ Eng 5(3):274–279

    Google Scholar 

  • Hájek P, Fiala C, Kynčlová M (2011) Life cycle assessments of concrete structures–a step towards environmental savings. Struct Concr 12(1):13–22

    Google Scholar 

  • Hasan MI, Yazdani N (2016) An experimental study for quantitative estimation of rebar corrosion in concrete using ground penetrating radar. J Eng. https://doi.org/10.1155/2016/8536850

    Article  Google Scholar 

  • Hassan MRA, Bakar MHA, Dambul K, Adikan FRM (2012) Optical-based sensors for monitoring corrosion of reinforcement rebar via an etched cladding Bragg grating. Sensors 12(11):15820–15826

    Google Scholar 

  • He Y, Tian G, Zhang H, Alamin M, Simm A, Jackson P (2012) Steel corrosion characterization using pulsed eddy current systems. IEEE Sens J 12(6):2113–2120

    Google Scholar 

  • He Y, Pan M, Tian G, Chen D, Tang Y, Zhang H (2013) Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation. Appl Phys Lett 103(14):19–23

    Google Scholar 

  • He Y, Pan M, Chen D, Tian G, Zhang H (2013a) Eddy current step heating thermography for quantitatively evaluation. Appl Phys Lett 103(19)

  • Hiasa S, Birgul R, Catbas FN (2017) Effect of defect size on subsurface defect detectability and defect depth estimation for concrete structures by infrared thermography. J Nondestruct Eval 36(3):57

    Google Scholar 

  • Hong S, Lai WL, Wilsch G, Helmerich R, Helmerich R, Günther T, Wiggenhauser H (2014) Periodic mapping of reinforcement corrosion in intrusive chloride contaminated concrete with GPR. Constr Build Mater 66:671–684

    Google Scholar 

  • Hong S, Lai WL, Helmerich R (2015) Experimental monitoring of chloride-induced reinforcement corrosion and chloride contamination in concrete with ground-penetrating radar. Struct Infrastruct Eng. 11(1):15–26

    Google Scholar 

  • Hu W, Cai H, Yang M, Tong X, Zhou C, Chen W (2011) Fe–C-coated fibre Bragg grating sensor for steel corrosion monitoring. Corros Sci 53(5):1933–1938

    Google Scholar 

  • Huang M, Jiang L, Liaw PK, Brooks CR, Seeley R, Klarstrom DL (1998) Using acoustic emission in fatigue and fracture materials research. JOM 50(11):1–4

    Google Scholar 

  • Hugenschmidt J, Loser R (2008) Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater Struct 41(4):785–792

    Google Scholar 

  • Huh J, Tran QH, Lee JH, Han D, Ahn JH, Yim S (2016) Experimental study on detection of deterioration in concrete using infrared thermography technique. Adv Mater Sci Eng. https://doi.org/10.1155/2016/1053856

    Article  Google Scholar 

  • Idrissi H, Limam A (2003) Study and characterization by acoustic emission and electrochemical measurements of concrete deterioration caused by reinforcement steel corrosion. NDT & E Int 36(8):563–569

    Google Scholar 

  • Ismail M, Rahman SFA, Muhammad B, Noor NM, Bakhtiar H (2011) Embedded sensor for detecting corrosion of reinforcement in concrete. Adv Mater Res 250–253:1118–1123

    Google Scholar 

  • Jeong JA, Jin CK, Kim YH, Chung WS (2013) Electrochemical performance evaluation of corrosion monitoring sensor for reinforced concrete structures. J Adv Concr Technol 11(1):389–394

    Google Scholar 

  • Jiang G, Jin W, Xinming Z (2009) Simulation of fiber Bragg grating sensor for rebar corrosion. Proc SPIE 7493:1–6

    Google Scholar 

  • Kawasaki Y, Tomoda Y, Ohtsu M (2010) AE monitoring of corrosion process in cyclic wet–dry test. Constr Build Mater 24(12):2353–2357

    Google Scholar 

  • Kawasaki Y, Wakuda T, Kobarai T, Ohtsu M (2013) Corrosion mechanisms in reinforced concrete by acoustic emission. Constr Build Mater 48:1240–1247

    Google Scholar 

  • Kencanawati NN, Anshari B, Paedullah AG, Shigeishi M (2018) The study of ultrasonic pulse velocity on plain and reinforced damaged concrete. In: MATEC Web of Conferences, 195:02026

  • Kersey AD, Davis MA, Patrick HJ, LeBlanc M, Koo KP, Askins CG, Putnam MA, Friebele EJ (1997) Fiber grating sensors. J Light Technol 15(8):1442–1463

    Google Scholar 

  • Khan F, Bolhassani M, Kontsos A, Hamid A, Bartoli I (2015) Modeling and experimental implementation of infrared thermography on concrete masonry structures. Infrared Phys Technol 69:228–237

    Google Scholar 

  • Kobayashi K, Banthia N (2011) Corrosion detection in reinforced concrete using induction heating and infrared thermography. J Civ Struct Health Monit 1(1–2):25–35

    Google Scholar 

  • Komlos K, Popovics S, Nürnbergerová T, Babal B, Popovics JS (1996) Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cem Concr Compos 18(5):357–364

    Google Scholar 

  • Kumar K, Muralidharan S, Manjula T, Karthikeyan MS, Palaniswamy N (2006) Sensor systems for corrosion monitoring in concrete structures. Sens Transducers 67:553–560

    Google Scholar 

  • Lai WL, Kind T, Wiggenhauser H (2010) Detection of accelerated reinforcement corrosion in concrete by ground penetrating radar. In: Proceedings of the XIII International Conference on Ground Penetrating Radar, IEEE, pp 1–5

  • Lai WL, Kind T, Wiggenhauser H (2011) Using ground penetrating radar and time–frequency analysis to characterize construction materials. NDT & E Int 44(1):111–120

    Google Scholar 

  • Lai WL, Kind T, Stoppel M, Wiggenhauser H (2013) Measurement of accelerated steel corrosion in concrete using ground-penetrating radar and a modified half-cell potential method. J Infrastruct Syst 19(2):205–220

    Google Scholar 

  • Lai WL, Derobert X, Annan P (2018) A review of ground penetrating radar application in civil engineering: a 30-year journey from locating and testing to imaging and diagnosis. NDT & E Int 96:58–78

    Google Scholar 

  • Lau KT (2003) Fibre-optic sensors and smart composites for concrete applications. Mag Concr Res 55(1):19–34

    Google Scholar 

  • Law DW, Tang D, Molyneaux TK, Gravina R (2011) Impact of crack width on bond: confined and unconfined rebar. Mater Struct Constr 44(7):1287–1296

    Google Scholar 

  • Lee JR, Yun CY, Yoon DJ (2009) A structural corrosion-monitoring sensor based on a pair of prestrained fiber Bragg gratings. Meas Sci Technol. https://doi.org/10.1088/0957-0233/21/1/017002

    Article  Google Scholar 

  • Lei Y, Zheng ZP (2013) Review of physical based monitoring techniques for condition assessment of corrosion in reinforced concrete. Math Probl Eng. https://doi.org/10.1155/2013/953930

    Article  Google Scholar 

  • Leung CKY, Wan KT, Chen L (2008) A novel optical fiber sensor for steel corrosion in concrete structures. Sensors 8(3):1960–1976

    Google Scholar 

  • Li D, Zhang S, Yang W, Zhang W (2014) Corrosion monitoring and evaluation of reinforced concrete structures utilizing the ultrasonic guided wave technique. Int J Distrib Sens Networks. https://doi.org/10.1155/2014/827130

    Article  Google Scholar 

  • Li W, Ho SC, Song G (2016) Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe. Smart Mater Struct. https://doi.org/10.1088/0964-1726/25/4/045017

    Article  Google Scholar 

  • Li W, Ho SC, Luo M, Huynh Q, Song G (2017a) Fiber optic macro-bend based sensor for detection of metal loss. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aa5d5d

    Article  Google Scholar 

  • Li W, Xu C, Ho SCM, Wang B, Song G (2017b) Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 17(3):657–668

    Google Scholar 

  • Liang MT, Huang R, Jiang CM (1996) Nondestructive testing of the corrosive damage of reinforced concrete structures using ultrasonic method. J Mar Sci Technol 4(1):29–33

    Google Scholar 

  • Luo D, Li Y, Li J, Lim KS, Nazal NAM, Ahmad H (2019) A recent progress of steel bar corrosion diagnostic techniques in RC structures. Sensors 19(1):34

    Google Scholar 

  • Maierhofer C (2003) Nondestructive evaluation of concrete infrastructure with ground penetrating radar. J Mater Civil Eng 15(3):287–297

    Google Scholar 

  • Majumder M, Gangopadhyay TK, Chakraborty AK, Dasgupta K, Bhattacharya DK (2008) Fibre Bragg gratings in structural health monitoring-Present status and applications. Sens Actuator A Phys 147(1):150–164

    Google Scholar 

  • Mao J, Chen J, Cui L, Jin W, Xu C, He Y (2015) Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors. Sensors 15(4):8866–8883

    Google Scholar 

  • McCague C, Fabian M, Karimi M, Bravo M, Jaroszewicz LR, Mergo P, Sun T, Grattan KT (2014) Novel sensor design using photonic crystal fibres for monitoring the onset of corrosion in reinforced concrete structures. J Light Technol 32(5):891–896

    Google Scholar 

  • McCann DM, Forde MC (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT & E Int 34(2):71–84

    Google Scholar 

  • Michel A, Pease BJ, Geiker MR, Stang H, Olesen JF (2011) Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements. Cem Concr Res 41(11):1085–1094

    Google Scholar 

  • Minesawa GV, Sasaki E (2014) Eddy current inspection of corrosion defects for concrete embedded steel members. AIP Conf Proc 1581:781–786

    Google Scholar 

  • Montemor MF, Simoes AM, Ferreira MG (2003) Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 25:491–502

    Google Scholar 

  • Mpalaskas AC, Vasilakos I, Matikas TE, Chai HK, Aggelis DG (2014) Monitoring of the fracture mechanisms induced by pull-out and compression in concrete. Eng Fract Mech 128:219–230

    Google Scholar 

  • Na S, Paik I (2019) Application of thermal image data to detect rebar corrosion in concrete structures. Appl Sci 9(21):10–12

    Google Scholar 

  • Naffa SO, Goueygou M, Piwakowski B, Buyle-Bodin F (2002) Detection of chemical damage in concrete using ultrasound. Ultrasonics 40:247–251

    Google Scholar 

  • Nair A, Cai CS (2010) Acoustic emission monitoring of bridges: review and case studies. Eng Struct 32(6):1704–1714

    Google Scholar 

  • Nawfi NM, Sarusan N, Piyathilake SAKVM, Sivahar V, Munasinghe RGNDS (2018) Remote estimation of degree of corrosion using ultrasonic pulse echo methods. In: Moratuwa Engineering Research Conference (MERCon), IEEE, pp 312–317

  • Neff D, Harnisch J, Beck M, Lostis V, Goebbels J, Meinel D (2011) Morphology of corrosion products of steel in concrete under macro-cell and self-corrosion conditions. Mater Corros 62(9):861–871

    Google Scholar 

  • Noorsuhada MN (2016) An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique. Constr Build Mater 112:424–439

    Google Scholar 

  • Norris A, Saafi M, Romine P (2008) Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr Build Mater 22(2):111–120

    Google Scholar 

  • Ohtsu M, Mori K, Kawasaki Y (2011) Corrosion process and mechanisms of corrosion-induced cracks in reinforced concrete identified by AE analysis. Strain 47:179–186

    Google Scholar 

  • Oliveira JMD Jr, Martins AC, de Milito JA (2004) Analysis of concrete material through gamma ray computerized tomography. Braz J Phys 34(3A):1020–1023

    Google Scholar 

  • Ong JB, You Z, Mills-Beale J, Tan EL, Pereles BD, Ong KG (2008) A wireless, passive embedded sensor for real-time monitoring of water content in civil engineering materials. IEEE Sens J 8(12):2053–2058

    Google Scholar 

  • Pacheco CJ, Bruno AC (2013) A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement. Sensors 13(9):11476–11489

    Google Scholar 

  • Patil S, Karkare B, Goyal S (2014) Acoustic emission vis-à-vis electrochemical techniques for corrosion monitoring of reinforced concrete element. Constr Build Mater 68:326–332

    Google Scholar 

  • Pereira EV, Figueira RB, Salta MM, Fonseca IT (2008) Embedded sensors for corrosion monitoring of existing reinforced concrete structures. Mater Sci Forum 587:677–681

    Google Scholar 

  • Pereira EV, Figueira RB, Salta MML, Da Fonseca ITE (2009) A galvanic sensor for monitoring the corrosion condition of the concrete reinforcing steel: relationship between the galvanic and the corrosion currents. Sensors 9(11):8391–8398

    Google Scholar 

  • Priou J, Lecieux Y, Chevreuil M, Gaillard V, Lupi C, Leduc D, Rozière E, Guyard R, Schoefs F (2019) In situ DC electrical resistivity mapping performed in a reinforced concrete wharf using embedded sensors. Constr Build Mater 211:244–260

    Google Scholar 

  • Qaddoumi NN, Saleh WM, Abou-Khousa M (2007) Innovative near-field microwave nondestructive testing of corroded metallic structures utilizing open-ended rectangular waveguide probes. IEEE Trans Instrum Meas 56(5):1961–1966

    Google Scholar 

  • Qin L, Qin Q, Ren H, Dong B, Xing F (2014) Corrosion monitoring using embedded piezoelectric sensors. Open Civ Eng J 8(1):201–204

    Google Scholar 

  • Quinn W, Kelly G, Barrett J (2012) Development of an embedded wireless sensing system for the monitoring of concrete. Struct Health Monit 11(4):381–392

    Google Scholar 

  • Rahman SFA, Ismail M, Noor NM, Bakhtiar H (2012) Embedded capacitor sensor for monitoring corrosion of reinforcement in concrete. J Eng Sci Technol 7(2):209–218

    Google Scholar 

  • Roqueta G, Jofre L, Feng MQ (2012) Analysis of the electromagnetic signature of reinforced concrete structures for nondestructive evaluation of corrosion damage. IEEE Trans Instrum Meas 61(4):1090–1098

    Google Scholar 

  • Rubinacci G, Tamburrino A, Ventre S (2007) Concrete rebars inspection by eddy current testing. Int J Appl Electromagn Mech 25(1–4):333–339

    Google Scholar 

  • Salamone S, Veletzos MJ, Lanza di Scalea F, Restrepo JI (2012) Detection of initial yield and onset of failure in bonded posttensioned concrete beams. J Bridg Eng 17(6):966–974

    Google Scholar 

  • Šamárková K, Chobola Z, Štefková D (2014a) The corrosion status of reinforced concrete structure monitoring by impact-echo method. Adv Mat Res 875–877:445–449

    Google Scholar 

  • Šamárková K, Chobola Z, Štefková D (2014b) Impact-echo methods to assessment corrosion of reinforced concrete structures. Adv Mat Res 627:268–271

    Google Scholar 

  • Šamárková K, Chobola Z, Štefková D (2014c) Using of impact-echo methods to assessment of reinforced concrete structures corrosion. Adv Mat Res 446–447:1400–1404

    Google Scholar 

  • Šamárková K, Štefková D, Chobola Z (2014d) Monitoring of reinforced concrete structure corrosion by using impact-echo method. Adv Mat Res 1000:239–242

    Google Scholar 

  • Šavija B, Luković M, Hosseini SAS, Pacheco J, Schlangen E (2015) Corrosion induced cover cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-ray spectrometry (EDS). Mater Struct 48(7):2043–2062

    Google Scholar 

  • Sbartaï ZM, Laurens S, Rhazi J, Balayssac JP, Arliguie G (2007) Using radar direct wave for concrete condition assessment: correlation with electrical resistivity. J Appl Geophys 62(4):361–374

    Google Scholar 

  • Shi X, Xie N, Fortune K, Gong J (2012) Durability of steel reinforced concrete in chloride environments: an overview. Constr Build Mater 30:125–138

    Google Scholar 

  • Showunmi TP (2013) Finite element infrared thermography study on concrete and steel-concrete composite structures. MS Thesis, Bethlehem, Pennsylvania

  • Solla M, Lagüela S, Fernández N, Garrido I (2019) Assessing rebar corrosion through the combination of nondestructive GPR and IRT methodologies. Remote Sens 11(14):1705–1728

    Google Scholar 

  • Song HW, Saraswathy V (2007) Corrosion monitoring of reinforced concrete structures-a review. Int J Electrochem Sci 2:1–28

    Google Scholar 

  • Song G, Gu H, Mo YL, Hsu TTC, Dhonde H (2007) Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater Struct 16(4):959–968

    Google Scholar 

  • Soulioti D, Barkoula NM, Paipetis A, Matikas TE, Shiotani T, Aggelis DG (2009) Acoustic emission behavior of steel fibre reinforced concrete under bending. Constr Build Mater 23(12):3532–3536

    Google Scholar 

  • Stoev K (2014) High-energy digital radiography of CANDU concrete structures. In: 10th International Conference on CANDU® Maintenance, Toronto, Ontario, Canada

  • Suh DM, Jang KS, Jang JE, Lee D (2012) Corrosion steel inspection under steel plate using Pulsed Eddy Current Testing. In: Proceedings of the 4th International Symposium on NDT in Aerospace, Augsburg, Germany, pp 13–18

  • Szymanik B, Frankowski PK, Chady T, Chelliah J, Azariah CR (2016) Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors. Sensors 16(2):234

    Google Scholar 

  • Tan CH, Adikan FRM, Shee YG, Yap BK (2017) Non-destructive fiber Bragg grating based sensing system: early corrosion detection for structural health monitoring. Sens Actuator A Phys 268:61–67

    Google Scholar 

  • Tang F, Chen Y, Li Z, Tang Y, Chen G (2018) Application of Fe-C coated LPFG sensor for early stage corrosion monitoring of steel bar in RC structures. Constr Build Mater 175:14–25

    Google Scholar 

  • Tarussov A, Vandry M, Haza ADL (2013) Condition assessment of concrete structures using a new analysis method: ground-penetrating radar computer-assisted visual interpretation. Constr Build Mater 38:1246–1254

    Google Scholar 

  • Twumasi JO, Le V, Tang Q, Yu T (2016) Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing. Proc SPIE 9804:1–10

    Google Scholar 

  • Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG (2014) Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7):12305–12348

    Google Scholar 

  • Vallée R, Frédérick S, Asatryan K, Fischer M, Galstian T (2004) Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides. Opt Commun 230(4–6):301–307

    Google Scholar 

  • Varnavina AV, Khamzin AK, Sneed LH, Torgashov EV, Anderson NL, Maerz NH, Boyko KJ (2015) Concrete bridge deck assessment: relationship between GPR data and concrete removal depth measurements collected after hydrodemolition. Constr Build Mater 99:26–38

    Google Scholar 

  • Villalba S, Casas JR (2013) Application of optical fiber distributed sensing to health monitoring of concrete structures. Mech Syst Signal Process 39(1–2):441–451

    Google Scholar 

  • Vollmer M, Möllmann KP (2010) Infrared thermal imaging: fundamentals, research and applications. Weinheim, Germany

    Google Scholar 

  • Washer G (2012) Advances in the use of thermographic imaging for the condition assessment of bridges. Bridge Struct 8(2):81–90

    Google Scholar 

  • Watanabe T, Trang HTH, Harada K, Hashimoto C (2014) Evaluation of corrosion-induced crack and rebar corrosion by ultrasonic testing. Constr Build Mater 67:197–201

    Google Scholar 

  • Weekes B, Almond DP, Cawley P, Barden T (2012) Eddy-current induced thermography—probability of detection study of small fatigue cracks in steel, titanium and nickel-based superalloy. NDT and E Int 49:47–56

    Google Scholar 

  • Wilson J, Tian GY, Abidin IZ, Yang S, Almond D (2010) Pulsed eddy current thermography: system development and evaluation. Insight-Non-Destr Test Cond Monit 52(2):87–90

    Google Scholar 

  • Wiwatrojanagul P, Sahamitmongkol R, Tangtermsirikul S, Khamsemanan N (2017) A new method to determine locations of rebars and estimate cover thickness of RC structures using GPR data. Constr Build Mater 140:257–273

    Google Scholar 

  • Yang R, He Y, Gao B, Tian GY, Peng J (2015) Lateral heat conduction based eddy current thermography for detection of parallel cracks and rail tread oblique cracks. Measurement 66:54–61

    Google Scholar 

  • Yehia S, Qaddoumi N, Farrag S, Hamzeh L (2014) Investigation of concrete mix variations and environmental conditions on defect detection ability using GPR. NDT & E Int 65:35–46

    Google Scholar 

  • Yeih W, Huang R (1998) Detection of the corrosion damage in reinforced concrete members by ultrasonic testing. Cem Concr Res 28(7):1071–1083

    Google Scholar 

  • Yu A, Zhao Y, Wang L (2014) Acoustic emission (AE) online monitoring test on corrosion in reinforced concrete. J Build Mater 17:291–297

    Google Scholar 

  • Zaccardi YAV, Fullea García J, Huélamo P, Di Maio AA (2009) Influence of temperature and humidity on Portland cement mortar resistivity monitored with inner sensors. Mater Corros 60(4):294–299

    Google Scholar 

  • Zaki A, Kabir S, Bakar BA, Johari MM, Jusman Y (2010) Application of image processing for detection of corrosion using ground penetrating radar. In: Proceedings of the 6th International Conference on Information Communication Technology and Systems, pp 93–100

  • Zaki A, Chai HK, Behnia A, Aggelis DG, Tan JY, Ibrahim Z (2017) Monitoring fracture of steel corroded reinforced concrete members under flexure by acoustic emission technique. Constr Build Mater 136:609–618

    Google Scholar 

  • Zaki A, Johari M, Azmi M, Hussin W, Aminuddin WM, Jusman Y (2018) Experimental assessment of rebar corrosion in concrete slab using ground penetrating radar (GPR). International Journal of Corrosion

  • Zhang H, Gao B, Tian GY, Woo WL, Bai L (2013) Metal defects sizing and detection under thick coating using microwave NDT. NDT & E Int 60:52–61

    Google Scholar 

  • Zhang N, Chen W, Zheng X, Hu W, Gao M (2015) Optical sensor for steel corrosion monitoring based on etched fiber Bragg grating sputtered with iron film. IEEE Sens J 15(6):3551–3556

    Google Scholar 

  • Zhao X, Gong P, Qiao G, Lu J, Lv X, Ou J (2011) Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method. Sensors 11(11):10798–10819

    Google Scholar 

  • Zheng Z, Sun X, Lei Y (2009) Monitoring corrosion of reinforcement in concrete structures via fiber Bragg grating sensors. Front Mech Eng 4(3):316–319

    Google Scholar 

  • Zheng Z, Lei Y, Sun X (2010) Measuring corrosion of steel in concrete via Fiber Bragg Grating sensors—Lab experimental test and in-field application. Earth and Space. pp 2422–2430

  • Zhou Y, Gencturk B, Willam K, Attar A (2015) Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. J Mater Civ Eng. 27(9):04014245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, M., Gupta, A.K. A Review of Different Assessment Methods of Corrosion of Steel Reinforcement in Concrete. Iran J Sci Technol Trans Civ Eng 46, 735–752 (2022). https://doi.org/10.1007/s40996-021-00644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-021-00644-5

Keywords

Navigation