Skip to main content
Log in

An Anisotropic Critical State Plasticity Model with Stress Ratio-Dependent Fabric Tensor

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new constitutive model within the recent anisotropic critical state theory (ACST) to take into account the influence of evolving fabric on the stress–strain–strength response of anisotropic sands. Analytical proofs in support of stress–force–fabric correlations corroborate a clear connection between mobilization of the continuum level stress ratio and particle level fabric in granular media. A normalized stress ratio-dependent second-order fabric tensor is suggested here which fulfills the ACST. Dilatancy and plastic hardening modulus of a stress ratio-driven elastoplastic model with zero pure elastic domain are explicitly interrelated to the proposed stress ratio-dependent normalized fabric tensor. It is shown that the fabric-dependent model simulations agree well with the monotonic triaxial and hollow cylinder torsion shear tests data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alipour MJ, Lashkari A (2018) Sand instability under constant shear drained stress path. Int J Solids Struct 150:66–82

    Google Scholar 

  • Azami A, Pietruszczak S, Guo P (2010) Bearing capacity of shallow foundations in transversely isotropic granular media. Int J Numer Anal Methods Geomech 34(8):771–793

    MATH  Google Scholar 

  • Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

    Google Scholar 

  • Dafalias YF (2016) Must critical state theory be revisited to include fabric effects? Acta Geotech 11(3):479–491

    Google Scholar 

  • Dafalias YF, Papadimitriou AG, Li XS (2004) Sand plasticity model accounting for inherent fabric anisotropy. J Eng Mech 130(11):1319–1333

    Google Scholar 

  • Einav I, Puzrin A (2004) Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. J Geotech Geoenviron Eng 130(1):81–92

    Google Scholar 

  • Farhadi B, Lashkari A (2017) Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces. Soils Found 57(1):111–125

    Google Scholar 

  • Finn WDL (2000) Post-liquefaction flow deformations. In: Pak RYS, Yamamura J (eds) Soil dynamics and liquefaction 2000. Geotechnical special publication no. 107, pp 108–122

  • Fu PC, Dafalias YF (2011) Study of anisotropic shear strength of granular materials using DEM simulation. Int J Numer Anal Methods Geomech 35:1098–1126

    Google Scholar 

  • Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38(4):370–390

    Google Scholar 

  • Golchin A, Lashkari A (2014) A critical state sand model with elastic-plastic coupling. Int J Solids Struct 51:2807–2825

    Google Scholar 

  • Graham J, Houlsby GT (1983) Anisotropic elasticity of a natural clay. Géotechnique 33(2):165–180

    Google Scholar 

  • Gu X, Huang M, Qian J (2014) DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter 16:91–106

    Google Scholar 

  • Guo N, Zhao J (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15

    MathSciNet  Google Scholar 

  • Gutierrez M, Ishihara K, Towhata I (1991) Flow theory for sand during rotation of principal stress direction. Soils Found 31(4):121–132

    Google Scholar 

  • Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Soil Mech Found Eng Div 89(SM1):33–65

    Google Scholar 

  • Imseeh WH, Druckrey AM, Alshibli KA (2018) 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography. Granular Matter 20:24. https://doi.org/10.1007/s10035-018-0798-x

    Article  Google Scholar 

  • Jiang M, Zhang A, Fu C (2018) 3-D DEM simulation of drained triaxial tests on inherently anisotropic granulates. Eur J Environ Civ Eng 22:37–56

    Google Scholar 

  • Koseki J, Kawakami S, Nagayama H, Sato T (2000) Change of small strain quasielastic deformation properties during undrained cyclic torsional shear and triaxial tests of Toyoura sand. Soils Found 40(3):101–110

    Google Scholar 

  • Lade PV, Duncan JM (1973) Cubical triaxial tests on cohesionless soils. J Soil Mech Found Eng 99(SM10):793–812

    Google Scholar 

  • Lashkari A (2010) A SANISAND model with anisotropic elasticity. Soil Dyn Earthq Eng 30(146):2–1477

    Google Scholar 

  • Lashkari A (2016) Prediction of flow liquefaction instability of clean and silty sands. Acta Geotech 11(5):987–1014

    Google Scholar 

  • Lashkari A, Golchin A (2014) On the influence of elastic-plastic coupling on sands response. Comput Geotech 55:352–364

    Google Scholar 

  • Lashkari A, Jamali V (2020) Global and local sand-geosynthetic interface behavior. Geétechnique. https://doi.org/10.1680/jgeot.19.P.109

    Article  Google Scholar 

  • Lashkari A, Yaghtin MS (2018) Sand flow liquefaction instability under shear-volume coupled strain paths. Géotechnique 68(11):1002–1024

    Google Scholar 

  • Lashkari A, Karimi A, Fakharian K, Kaviani-Hamedani F (2017) Prediction of undrained behavior of isotropically and anisotropically consolidated Firoozkuh sand: instability and flow liquefaction. Int J Geomech 17(10):04017083-1–04017083-17

    Google Scholar 

  • Lashkari A, Khodadadi M, Binesh SM, Rahman MdM (2019) Instability of particulate assemblies under constant shear drained stress path: a DEM approach. Int J Geomech 19(6):04019049-1–04019049-21

    Google Scholar 

  • Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Géotechnique 50(4):449–460

    Google Scholar 

  • Li XS, Dafalias YF (2002) Constitutive modeling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng 128(10):868–880

    Google Scholar 

  • Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. ASCE J Eng Mech 138(3):263–275

    Google Scholar 

  • Li X, Yu H-S (2013) On the stress-force-fabric relationship for granular materials. Int J Solids Struct 50:1285–1302

    Google Scholar 

  • Li X, Yu H-S, Li XS (2009) Macro-micro relations in granular mechanics. Int J Solids Struct 46(25–26):4331–4341

    MATH  Google Scholar 

  • Li B, Zeng X, Ming H (2010) Seismic response of retaining wall with anisotropic backfills. In: ASCE geotechnical special publication 384 (proceedings of earth retention conference), Reston, VA, USA, pp 688–695

  • Mehrabadi MM, Nemat-Nasser S, Oda M (1982) On statistical description of stress and fabric in granular materials. Int J Numer Anal Methods Geomech 6:95–108

    MathSciNet  MATH  Google Scholar 

  • Nakata Y, Hyodo M, Murata H, Yasufuku N (1998) Flow deformation of sands subjected to principal stress rotation. Soils Found 38(2):115–128

    Google Scholar 

  • Oda M (1972) The mechanism of fabric changes during compressional deformation of sand. Soils Found 12(2):1–18

    Google Scholar 

  • Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16:35–45

    Google Scholar 

  • Oda M (1999) Fabric tensor and its geometrical meaning. In: Oda M, Iwashita K (eds) Introduction to mechanics of granular materials. AA Balkema, Rotterdam, pp 27–35

    Google Scholar 

  • Oda M, Koishikawa I (1979) Effect of strength anisotropy on bearing capacity of shallow footing in a dense sand. Soils Found 19(3):15–28

    Google Scholar 

  • Papadimitriou AG, Dafalias YF, Yoshimine M (2005) Plasticity modeling of the effect of sample preparation method on sand response. Soils Found 45(2):109–123

    Google Scholar 

  • Papadimitriou AG, Chaloulos YK, Dafalias YF (2018) A fabric-based sand plasticity model with reversal surfaces within anisotropic critical state theory. Acta Geotech. https://doi.org/10.1007/s11440-018-751-5

    Article  Google Scholar 

  • Petalas AL, Dafalias YF, Papadimitriou AG (2018) SANISAND-FN: an evolving fabric-based sand model accounting for stress principal axes rotation. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.2855

    Article  Google Scholar 

  • Qin J, Zeng X, Ming H (2016) Centrifuge modeling and the influence of fabric anisotropy on seismic response of foundations. J Geotech Geoenviron Eng 142(3):1–11

    Google Scholar 

  • Rahman MM, Baki MAL, Lo SR (2014) Prediction f undrained monotonic and cyclic liquefaction of sand with fines based on the equivalent granular state parameter. Int J Geomech 14(2):254–266

    Google Scholar 

  • Roscoe KH, Schofield AN, Wroth CP (1958) On the yielding of soils. Géotechnique 8(1):22–53

    Google Scholar 

  • Salimi MJ, Lashkari A (2020) Undrained true triaxial response of initially anisotropic particulate assemblies using CFM-DEM. Comput Geotech 124:103509

    Google Scholar 

  • Seed HB, Seed RB, Harder Jr LF, Jong H-L (1989) Re-evaluation of the lower Sand Fernando dam. Report no. 2, examination of the post-earthquake slide of February 9, 1971, Department of the Army, US Army Corps of Engineers, Washington, DC 20314-1000

  • Seyedi Hosseininia E (2012) Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granular Matter 14(4):483–503

    MATH  Google Scholar 

  • Seyedi Hosseininia E (2013) Stress-force-fabric relationship for planar granular materials. Géotechnique 63(10):830–841

    Google Scholar 

  • Shi J, Guo P (2018) Fabric evolution of granular materials along imposed stress paths. Acta Geotech. https://doi.org/10.1007/s11440-018-0665-2

    Article  Google Scholar 

  • Sivathayalan S, Vaid YP (2002) Influence of generalized initial state and principal stress rotation on the undrained response of sands. Can Geotech J 39:63–76

    Google Scholar 

  • Sun Y, Gao Y, Zhu Q (2018a) Fractional order plasticity modeling of state-dependent behavior of granular soils without using plastic potential. Int J Plast 102:53–69

    Google Scholar 

  • Sun Y, Gao Y, Shen Y (2018b) Mathematical aspect of the state-dependent stress-dilatancy of granular soils under triaxial loading. Géotechnique. https://doi.org/10.1680/jgeot.17.T.029

    Article  Google Scholar 

  • Theocharis AI, Vairaktaris E, Dafalias YF, Papadimitriou AG (2016) Proof of incompleteness of critical state theory in granular mechanics and its remedy. J Eng Mech 143(2):04016117-1–04016117-12

    Google Scholar 

  • Uthayakumar M, Vaid YP (1998) Static liquefaction of sands under multiaxial loading. Can Geotech J 35:273–283

    Google Scholar 

  • Vaid YP, Sivathayalan S (2000) Fundamental factors affecting liquefaction susceptibility of sands. Can Geotech J 37:592–606

    Google Scholar 

  • Verdugo R, Ishihara K (1996) Steady state of sandy soil. Soils Found 36(2):81–91

    Google Scholar 

  • Wang Z-L, Dafalias YF, Shen X-K (1990) Bounding surface hypoplasticity model for sand. ASCE J Eng Mech 116(5):983–1001

    Google Scholar 

  • Xiao Y, Liu H (2017) Elastoplastic constitutive model for rockfill materials considering particle breakage. ASCE Int J Geomech 17(1):04016041-1–04016041-13

    Google Scholar 

  • Yang ZX, Wu Y (2016) Critical state for anisotropic granular materials: a discrete element perspective. Int J Geomech 17(2):04016054-1–04016054-15

    Google Scholar 

  • Yang ZX, Li XS, Yang J (2008) Quantifying and modeling fabric anisotropy of granular soils. Géotechnique 58(4):237–248

    Google Scholar 

  • Yoshimine M, Ishihara K, Vargas W (1998) Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Found 38(3):179–188

    Google Scholar 

  • Zhao J, Gao Z (2015) Unified anisotropic elastoplastic model for sand. J Eng Mech 142(1):04015056-1–04015056-12

    Google Scholar 

  • Zheng J, Hryciw RD (2018) Cross-anisotropic fabric of sands by wavelet-based simulation of human cognition. Soils Found 58(4):1028–1041

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Lashkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi, N., Lashkari, A. An Anisotropic Critical State Plasticity Model with Stress Ratio-Dependent Fabric Tensor. Iran J Sci Technol Trans Civ Eng 45, 2577–2594 (2021). https://doi.org/10.1007/s40996-020-00448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-020-00448-z

Keywords

Navigation