Skip to main content
Log in

Phenotypic Plasticity of Angora Loach, Oxynoemacheilus angorae (Steindachner, 1897) in Inland Waters of Turkey

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In the present study, we studied the morphological variations in four populations of Oxynoemacheilus angorae distributed in three basins of Turkish inland waters using a geometric morphometric technique. For this purpose, a total of 55 specimens were collected from the Kızılırmak, Sakarya and Marmara basins. To extract body shape data, the left side of the specimens was photographed, and 15 landmark points on the 2D pictures were defined and digitized. After generalized procrustes analysis, the body shape data were analyzed using multivariate analyses, such as principal component analysis, canonical variation analysis and cluster analysis. The deformation grids were used to show how the body shape changed. Based on the results, two groups, namely Nevşehir and Ankara, by having a deeper body and head and a somewhat longer caudal peduncle, and Yalova and Eskişehir due to lower body and shorter caudal peduncle were clustered. Based on the results, O. angorae adapts itself to different habitats by adjusting head and body depth and caudal peduncle length based on habitat parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Adams D, Collyer M, Kaliontzopoulou A, Sherratt E (2021) Geomorph: software for geometric morphometric analyses. R Package Version 3(2):1

    Google Scholar 

  • Barlow GW (1961) Social behavior of the desert pupfish, Cyprinodon macularius, in the field and in the aquarium. Am Midl Nat 65(2):339–359. https://doi.org/10.2307/2422959

    Article  Google Scholar 

  • Blake RW (1983) Fish locomotion. CUP Archive, p 77

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Geometry and biology. Cambridge University Press, Cambridge, p 435

    MATH  Google Scholar 

  • Cadrin SX, Silva VM (2005) Morphometric variation of yellowtail flounder. ICES J Mar Sci 62(4):683–694. https://doi.org/10.1016/j.icesjms.2005.02.006

    Article  Google Scholar 

  • Çiçek E, Sungur-Birecikligil S, Fricke R (2015) Freshwater fishes of Turkey: a revised and updated annotated checklist. Bih Biol 9(2):141–157

    Google Scholar 

  • Çiçek E, Fricke R, Sungur S, Eagderi E (2018) Endemic freshwater fishes of Turkey. Fishtaxa 3(4):1–39

    Google Scholar 

  • Çiçek E, Eagderi S, Sungur S (2019) Oxynoemacheilus phoxinoides (Erk’akan, Nalbant & Özeren, 2007): a junior synonym of Oxynoemacheilus angorae (Steindachner, 1897). FishTaxa 4(1):13–17

    Google Scholar 

  • Çiçek E, Sungur S, Fricke R (2020) Freshwater lampreys and fishes of Turkey; a revised and updated annotated checklist 2020. Zootaxa 4809(2):241–270. https://doi.org/10.11646/zootaxa.4809.2.2

    Article  Google Scholar 

  • Çiçek E, Eigdari S, Sungur S, Secer B (2021) Species of Oxynoemacheilus Bănărescu & Nalbant, 1966 (Actinopterygii: Nemacheilidae) in the Turkish Part of the Kura-Aras River System, with the First Detailed Evidence for the Occurrence of O. bergianus (Derjavin, 1934) and O. cf. elsae Eagderi et al., 2018. Acta Zool Bul 73(2):171–178

    Google Scholar 

  • Darcy GH (1985) Synopsis of biological data on the sand perch, Diplectrum formosum (Pisces, Serranidae). NOAA Tech Rep Circ NMFS 26:1–21

    Google Scholar 

  • Donley JM, Dickson KA (2000) Swimming kinematics of juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). J Exp Biol 203(20):3103–3116

    Article  Google Scholar 

  • Eagderi S, Esmaeilzadegan E, Madah A (2013) Body shape variation in riffle minnows (Alburnoides eichwaldii De Filippii, 1863) populations of Caspian Sea basin. J Taxon Biosys 5(4):1–8

    Google Scholar 

  • Eagderi S, Mouludi Saleh A, Poorbagher H (2020) Sexual dimorphism comparison of body shape of Esmaeilius sophiae using geometric morphometric method. J Anim Env 12(4):311–316

    Google Scholar 

  • Freyhof J, Erk’akan F, Özeren C, Perdices A (2011) An overview of the western Palaearctic loach genus Oxynoemacheilus (Teleostei: Nemacheilidae). Ichthyol Expl Fresh 22(4):301–312

    Google Scholar 

  • Freyhof J, Yoğurtçuoğlu B, Kaya C (2021) Oxynoemacheilus sarus/, a new nemacheilid loach from the lower Ceyhan and Seyhan in southern Anatolia (Teleostei: Nemacheilidae). Zootaxa 4964(1):123–139. https://doi.org/10.11646/zootaxa.4964.1

    Article  Google Scholar 

  • Fu C, Cao ZD, Fu SJ (2013) The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities. J Exp Bio 216(16):3164–3174. https://doi.org/10.1242/jeb.084244

    Article  Google Scholar 

  • Guill JM, Hood CS, Heins DC (2003) Body shape variation within and among three species of darters (Perciformes: Percidae). J Ecol Fresh 12(2):134–140. https://doi.org/10.1034/j.1600-0633.2003.00008.x

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palae Elect 4(1):1–9

    Google Scholar 

  • Hasanli AM (1999) Diverse methods to water measurement (Hydrometry). Shiraz University publication, Iran, p 265

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  Google Scholar 

  • Langerhans RB (2009) Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biol Lett 5(4):488–491. https://doi.org/10.1098/rsbl.2009.0179

    Article  Google Scholar 

  • Langerhans RB, Reznick DN (2010) Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. Fish Locomot Eco-Ethol Perspect 200:248

    Google Scholar 

  • Loy A, Cataudella S, Corti M (1996) Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostea: Perciformes), in relation to different rearing conditions. Advances in morphometrics. Springer, Boston, MA, pp 399–405. https://doi.org/10.1007/978-1-4757-9083-2_33

    Chapter  Google Scholar 

  • Mohammadi S, Eagdari S, Pourbagher H, Mouludi-Saleh A (2020) Morphological variation of Oxynoemacheilus bergianus (Derzhavin, 1934) from the Namak Lake and Caspian Sea basins using traditional morphometric method. J Fish Scie Tech 9(4):285–292

    Google Scholar 

  • Mouludi-Saleh A, Eagderi S (2021a) Habitat-associated morphological divergence of Gasterosteus aculeatus in the Southern Caspian Sea Basin. Iran J Sci Technol Trans Sci 45(1):121–125. https://doi.org/10.1007/s40995-020-01005-z

    Article  Google Scholar 

  • Mouludi-Saleh A, Eagderi S (2021b) Morphological variations of Oxynemacheilus bergianus (Derzhavin, 1934) in two inland water basins of Iran using geometric morphometric method. J Appl Ichthyol Res 8(4):71–76

    Google Scholar 

  • Mouludi-Saleh A, Eagderi S, Poorbagher H, Kazemzadeh S (2019) The effect of body shape type on differentiability of traditional and geometric morphometric methods: a case study of Channa gachua (Hamilton. Eur J Biol 78(2):165–168. https://doi.org/10.26650/EurJBiol.2019.0011

    Article  Google Scholar 

  • Mouludi-Saleh A, Eagderi S, Cicek E, Sungur S (2020a) Morphological variation of Transcaucasian chub, Squalius turcicus in southern Caspian Sea basin using geometric morphometric technique. Biol 75(10):1585–1590. https://doi.org/10.2478/s11756-019-00409-6

    Article  Google Scholar 

  • Mouludi-Saleh A, Eagderi S, Latif-Nejad Sh, Nasri M (2020b) The morphological study of trancaspian marinka (Schizothorax pelzami) in Harirud and Dasht-e Kavri basins using geometric morphometric technique. Nova Biol Rep 7(2):185–191

    Google Scholar 

  • Nasri M, Eagderi S, Farahmand H (2015) Interspecies morphological variation of Cyprinion watsoni (Day, 1872) from southern and southeastern inland water basins of Iran based on Geometric morphometrics method. J Appl Ichthyol Res 2(2):1–14

    Google Scholar 

  • Nasri M, Eagderi S, Farahmand H, Nezhadheydari H (2019) Interspecific morphological variation among members of the genus Cyprinion Heckel, 1843 (Teleostei: Cyprinidae) in Iran, using landmark-based geometric morphometric technique. Iran J Ichthyol 6(1):54–64. https://doi.org/10.22034/iji.v6i1.404

    Article  Google Scholar 

  • Nicieza AG (1995) Morphological variation between geographically disjunct populations of Atlantic salmon: the effects of ontogeny and habitat shift. Fun Eco 9:448–456. https://doi.org/10.2307/2390008

    Article  Google Scholar 

  • Plaut I (2000) Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio. J Exp Biol 203(4):813–820

    Article  Google Scholar 

  • Radkhah A, Poorbagher H, Eagderi S (2016) Investigation of morphological differences of Capoeta capoeta populations in the upstream and downstream of Zarinerood River in Urmia Lake Basin. J Anim Env 8(3):167–174

    Google Scholar 

  • Rodrigues-Oliveira IH, Kavalco KF, Pasa R (2022) Body shape variation in the Characid Psalidodon rivularis from São Francisco river, Southeast Brazil (Characiformes: Stethaprioninae). Acta Zool 00:1–10. https://doi.org/10.1111/azo.12415

    Article  Google Scholar 

  • Rohlf FJ (2004) tpsDIG. Version 1.40. Department of Ecology and Evolution. State University of New York at Stony Brook, New-York

    Google Scholar 

  • Seçer B, Mouludi-Saleh A, Eagderi S, Çiçek E, Sungur S (2020) Morphological flexibility of Oxynoemacheilus seyhanensis in different habitats of Turkish inland waters: a case of error in describing a populations as distinct species. Iran J Ichthyol 7(3):258–264

    Google Scholar 

  • Sherratt E (2014) Quick guide to geomorph v.2.1.4

  • Watson DJ, Balon EK (1984) Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J Fish Biol 25(3):371–384. https://doi.org/10.1111/j.1095-8649.1984.tb04885.x

    Article  Google Scholar 

  • Yang H, Cao ZD, Fu SJ (2013) Effect of caudal amputation on swimming capacity, energy expenditure and behavior in juvenile Chinese bream, Parabramis pekinensis. Acta Hydrobiol Sin 37:157–163

    Google Scholar 

  • Yedier S, Bostanci D (2021) Intra- and interspecific discrimination of Scorpaena species from the Aegean, Black, Mediterranean and Marmara seas. Sci Mar 85(3):197–209. https://doi.org/10.3989/scimar.05185.018

    Article  Google Scholar 

  • Yedier S, Bostanci D, Polat N (2021) First record of Oxynoemacheilus angorae (Steindachner, 1897) from perşembe plateau meandering streams in the Ordu-Turkey. Karadeniz Fen Bilimleri Dergisi 11(1):161–167. https://doi.org/10.31466/kfbd.905681

    Article  Google Scholar 

  • Yedier S, Bostanci D, Polat N (2021b) Some population characteristics of Oxynoemacheilus angorae (Steindachner, 1897) from the Perşembe Plateau meandering streams in Ordu. Turkey Fish Aqua Life 29(2):100–107. https://doi.org/10.2478/aopf-2021-0012

    Article  Google Scholar 

  • Yoğurtçuoğlu B, Kaya C, Özuluğ M, Freyhof J (2021) Oxynoemacheilus isauricus, a new nemacheilid loach from Central Anatolia (Teleostei: Nemacheilidae). Zootaxa 4975(2):369378. https://doi.org/10.11646/zootaxa.4975.2.7

    Article  Google Scholar 

  • Zamani-Faradonbe M, Eagderi S, Moradi M (2015) Patterns of body shape variation in Capoeta gracilis (Pisces: Cyprinidae) in relation to environmental variables in Sefidrud river Basin. Iran J Appl Biol Sci 9(1):36–42

    Google Scholar 

  • Zelditch M, Swiderski D, Sheets DH, Fink WL (2004) Geometric morphometrics for biologists: a primer. Academic Press, New York, p 478

    MATH  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Nevsehir Hacı Bektas Veli University and University of Tehran.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Design of study contributed by SE, AMS, and BS. Data acquisition contributed by BS and EC. Data analysis/interpretation contributed by SE, HP, and AMS. Drafting manuscript contributed by AMS and SE. Critical revision of manuscript contributed by SE and HP. Final approval and accountability contributed by SE. Technical or material support contributed by EC and SS. Supervision contributed by SE.

Corresponding author

Correspondence to Soheil Eagderi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

We confirm that all procedures performed in this study involving animals were in accordance with the ethical standards.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Secer, B., Mouludi-Saleh, A., Eagderi, S. et al. Phenotypic Plasticity of Angora Loach, Oxynoemacheilus angorae (Steindachner, 1897) in Inland Waters of Turkey. Iran J Sci Technol Trans Sci 46, 1317–1326 (2022). https://doi.org/10.1007/s40995-022-01348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-022-01348-9

Keywords

Navigation