Skip to main content
Log in

Nitrate Adsorption from Aqueous Solution by Metal–Organic Framework MOF-5

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The present study has been developed to evaluate the feasibility of the metal–organic framework (MOF) as adsorbent for nitrate removal from aqueous solution. The MOF-5 was prepared by solution and solvothermal methods via the self-assembly of primary building blocks using zinc acetate dehydrate and benzene-1,4-dicarboxylate (BDC) at two different conditions, room temperature and 90 °C temperature and with or without tri-ethylamine (TEA) as capping agent. The samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, BET surface area, and UV–Vis spectroscopy. The study of nitrate adsorption was carried out at room temperature on the higher surface area of MOF-5 in pH from 2 to 11, whereas significant difference of nitrate adsorption was observed in acidic pH. Based on the results, nano-sized MOF-5 was demonstrated the potential utility for nitrate removal from water solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2015) Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J Adv Res 6(3):405–415

    Article  Google Scholar 

  • Adeyemo AA, Adeoye IO, Bello OS (2012) Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol Environ Chem 94(10):1846–1863

    Article  Google Scholar 

  • Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manage 69:229–238

    Article  Google Scholar 

  • Atoini Y, Adi Prasetyanto E, Chen P, Jonckheere D, De Vos D, De Cola L (2017) Tuning luminescent properties of a metal organic framework by insertion of metal complexes. Supramol Chem. https://doi.org/10.1080/10610278.2017.1290249

    Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Article  Google Scholar 

  • Bhatnagara A, Kumarb E, Sillanpää M (2010) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163:317–323

    Article  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2007) Overview of in situ applicable nitrate removal processes. Desalination 204(1–3):46–62

    Article  Google Scholar 

  • Fang TH, Wang TH, Kang SH (2009) Nanomechanical and surface behavior of polydimethylsiloxane-filled nanoporous anodic alumina. J Mater Sci 44(6):1588–1593

    Article  Google Scholar 

  • Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 3(17):191–214

    Article  Google Scholar 

  • Fujita M, Kwon YJ, Washizu S, Ogura K (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine. J Am Chem Soc 116:1151–1152

    Article  Google Scholar 

  • Galán J, Rodríguez A, Gómez JM, Allen SJ, Walker GM (2013) Reactive dye adsorption onto a novel mesoporous carbon. Chem Eng J 219:62–68

    Article  Google Scholar 

  • Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978

    Article  Google Scholar 

  • Keskin S, Kizilel (2011) Biomedical applications of metal organic frameworks. Ind Eng Chem Res 50(4):1799–1812

    Article  Google Scholar 

  • Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456

    Article  Google Scholar 

  • Kitagawa S, Matsuda R (2007) Chemistry of coordination space of porous coordination polymers. Coord Chem Rev 251:2490–2509

    Article  Google Scholar 

  • Kleist W, Maciejewski M, Baiker A (2010) MOF-5 based mixed-linker metal–organic frameworks: synthesis, thermal stability and catalytic application. Thermochim Acta 499:71–78

    Article  Google Scholar 

  • Kuppler RJ, Timmons DJ, Fang QR, Li JR, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou HC (2009) Potential applications of metal organic frameworks. Coord Chem Rev 253:3042–3066

    Article  Google Scholar 

  • Li H, Eddaoudi M, Groy TL, Yaghi OM (1998a) Establishing microporosity in open metal−organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J Am Chem Soc 120:8571–8572

    Article  Google Scholar 

  • Li H, Davis CE, Groy TL, Kelley DG, Yaghi OM (1998b) Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)3•6CH3OH (BDC = 1,4-benzenedicarboxylate). J Am Chem Soc 120:2186–2187

    Article  Google Scholar 

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  Google Scholar 

  • Maji TK, Kitagawa S (2007) Chemistry of porous coordination polymers. Pure Appl Chem 79:2155–2177

    Article  Google Scholar 

  • Mena-Duran CJ, Sun Kou MR, Lopez T, Azamar-Barrios JA, Aguilar DH, Domínguez MI, Odriozola JA, Quintana P (2007) Nitrate removal using natural clays modified by acid thermoactivation. Appl Surf Sci 253(13):5762–5766

    Article  Google Scholar 

  • Mishra PC, Patel RK (2009) Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J Environ Manage 90(1):519–522

    Article  Google Scholar 

  • Motakef-Kazemi N, Shojaosadati SA, Morsali A (2014) In situ synthesis of a drug-loaded MOF at room temperature. Micropor Mesopor Mat 186:73–79

    Article  Google Scholar 

  • Mukherjee R, De S (2014) Adsorptive removal of nitrate from aqueous solution by polyacrylonitrile–alumina nanoparticle mixed matrix hollow-fiber membrane. Appl Surf Sci 466:281–292

    Google Scholar 

  • Munusamy K, Sethia G, Patil DV, Somayajulu Rallapalli PB, Somani RS, Bajaj HC (2012) Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies. Chem Eng J 195–196:359–368

    Article  Google Scholar 

  • Paik Suh M, Jeong Park H, Kootteri Prasad T, Lim DW (2011) Hydrogen storage in metal organic frameworks. Chem Rev 112:782–835

    Google Scholar 

  • Patil DV, Somayajulu Rallapalli PB, Dangi GP, Tayade RJ, Somani RS, Bajaj HC (2011) MIL-53(Al): an efficient adsorbent for the removal of nitrobenzene from aqueous solutions. Ind Eng Chem Res 50:10516–10524

    Article  Google Scholar 

  • Polarz S, Smarsly B (2002) Nanoporous materials. J Nanosci Nanotechnol 2(6):581–612

    Article  Google Scholar 

  • Qin QD, Ma J, Liu KJ (2007) Adsorption of nitrobenzene from aqueous solution by MCM-41. Colloid Interface Sci 315:80–86

    Article  Google Scholar 

  • Rasuli L, Mahvi AHJ (2016) Removal of humic acid from aqueous solution using MgO nanoparticles. J Water Chem Technol 38(1):21–27

    Article  Google Scholar 

  • Reineke TM, Eddaoudi M, Fehr M, Kelly D, Yaghi OM (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc 121:1651–1657

    Article  Google Scholar 

  • Sayari A, Hamoudi S, Yang Y (2005) Applications of pore-expanded mesoporous silica. 1. removal of heavy metal cations and organic pollutants from wastewater. Chem Mater 17:212–216

    Article  Google Scholar 

  • Senthil Raja D, Liu WL, Huang HY, Lin CH (2015) Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg Chem 35(6):332–349

    Google Scholar 

  • Stock N, Biswas S (2011) Synthesis of metal organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969

    Article  Google Scholar 

  • Tong MM, Liu DH, Yang QY, Devautour-Vinot S, Maurin G, Zhong CLJ (2013) Influence of the framework metal ions on the dye capture behavior of the MIL-100(Fe, Cr) MOF type solids. J Mater Chem A 1:8534–8537

    Article  Google Scholar 

  • Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5. Tetrahedron 64:8553–8557

    Article  Google Scholar 

  • Wang B, Xie YB, Yang H, Li M, Li JR (2014) A fluorescent 3-D metal-organic framework with unusual tetranuclear zinc secondary building units. J Coord Chem 21(67):3484–3491

    Article  Google Scholar 

  • Xie L, Liu D, Huang H, Yang Q, Zhong C (2014) Efficient capture of nitrobenzene from waste water using metal–organic frameworks. Chem Eng J 246:142–149

    Article  Google Scholar 

  • Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Addaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  Google Scholar 

  • Zamaro JM, Pérez NC, Miró EE, Casado C, Seoane B, Téllez C (2012) HKUST-1 MOF: a matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation. Chem Eng J 195–196:180–187

    Article  Google Scholar 

  • Zhang Y, Lan D, Wangn Y, Cao H, Jiang H (2011) MOF-5 decorated hierarchical ZnO nanorod arrays and its photoluminescence. Physica E 43:1219–1223

    Article  Google Scholar 

  • Zhaoa Z, Li X, Li Z (2011) Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101. Chem Eng J 173:150–157

    Article  Google Scholar 

  • Zou RQ, Abdel-Fattah AI, Xu WH, Zhao Y, Hickmott DD (2010) Storage and separation applications of nanoporous metal organic frameworks. Cryst Eng Comm 12:1337–1353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Motakef-Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmandoust, M.R., Motakef-Kazemi, N. & Ashouri, F. Nitrate Adsorption from Aqueous Solution by Metal–Organic Framework MOF-5. Iran J Sci Technol Trans Sci 43, 443–449 (2019). https://doi.org/10.1007/s40995-017-0423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0423-6

Keywords

Navigation