Skip to main content
Log in

Autoregressive Models with Mixture of Scale Mixtures of Gaussian Innovations

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper presents a theoretical and empirical study of likelihood inference for the autoregressive models with finite (m-component) mixture of scale mixtures of normal (Gaussian) (SMN) innovations. This model involves autoregressive models with single and mixture component of innovations, which are frequently used in time series data analysis. An EM-type algorithm for the maximum likelihood estimation is developed and the observed information matrix is obtained. The performance of the proposed model through a simulation study is also evaluated. The model is then applied on a real time series data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Akkaya A, Tiku ML (2001) Estimating parameters in autoregressive models in non-normal situations: asymmetric innovations. Commun Stat Theory Methods 30:517–536

    Article  MathSciNet  MATH  Google Scholar 

  • Andel J (1988) On AR(1) processes with exponential white noise. Commun Stat Theory Methods 17:1481–1495

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews DR, Mallows CL (1974) Scale mixture of normal distribution. J Roy Stat Soc B 36:99–102

    MathSciNet  MATH  Google Scholar 

  • Bache K, Lichman M (2013) UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. (http://archive.ics.uci.edu/ml)

  • Bandon P (2009) Estimation of autoregressive models with epsilon-skew-normal innovations. J Multivar Anal 100:1761–1776

    Article  MathSciNet  MATH  Google Scholar 

  • Besbeas P, Morgan BTJ (2004) Integrated squared error estimation of normal mixtures. Comput Stat Data Anal 44(3):517–526

    Article  MathSciNet  MATH  Google Scholar 

  • Böhning D, Seidel W, Alfó M, Garel B, Patilea V, Walther G (2007) Advances in mixture models. Comput Stat Data Anal 51:5205–5210

    Article  MathSciNet  MATH  Google Scholar 

  • Böhning D, Hennig C, McLachlan GJ, McNicholas PD (2014) The 2nd special issue on advances in mixture models. Comput Stat Data Anal 71:1–2

    Article  MathSciNet  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Carvalho AX, Tanner MA (2007) Modelling nonlinear count time series with local mixtures of Poisson autoregressions. Comput Stat Data Anal 51:5266. doi:10.1016/j.csda.2006.09.032

    Article  MathSciNet  MATH  Google Scholar 

  • Christmas J, Everson R (2011) Robust autoregression: Student’s t innovations using variational Bayes. IEEE Trans Signal Process 59:48–57

    Article  MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol 39:1–22

    MathSciNet  MATH  Google Scholar 

  • Glasbey CA (2001) Non-linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions. J R Stat Soc Ser C 50:143–154

    Article  MathSciNet  Google Scholar 

  • Kay S, Salisbury S (1990) Improved active sonar detection in reverberation using autoregressive prewhiteners. J Acoust Soc Am 87(4):1603–1611

    Article  Google Scholar 

  • Khorshidi S, Karimi M, Nematollahi AR (2011) New autoregressive (AR) order selection criteria based on the prediction error estimation. Sig Process 91(10):2359–2370

    Article  MATH  Google Scholar 

  • Hodgkiss WS, Hansen DS (1985) Maximum-entropy and Bayesian methods in inverse problems. Springer, Dordrecht

    Google Scholar 

  • Janacek GJ, Swift AL (1990) A class of models for non-normal time series. J Time Ser Anal 11:19–31

    Article  MathSciNet  Google Scholar 

  • Li WK, Mcleod AI (1988) ARMA modeling with non-Gaussian innovations. J Time Ser Anal 9:155–168

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81:633–648

    Article  MathSciNet  MATH  Google Scholar 

  • Liu CH, Rubin DB (1995) ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statist Sinica 5:19–40

    MathSciNet  MATH  Google Scholar 

  • Meng X, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80:267–278

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Ogawa T, Sonoda H, Ishiwa S, Shigeta Y (1992) An application of autoregressive model to pattern discrimination of brain electrical activity mapping. J Brain Topogr 6(1):3–11

    Article  Google Scholar 

  • Penny WD, Roberts SJ (2002) Variational Bayes for generalized autoregressive models. IEEE Trans Signal Process 50(9):2245–2257

    Article  MathSciNet  MATH  Google Scholar 

  • Ramdane-Cherif Z, Nait-Ali A, Motsch JF, Krebs MO (2004) An autoregressive (AR) model applied to eye tremor movement, clinical application in schizophrenia. J Med Syst 28(5):489–495

    Article  Google Scholar 

  • Roberts S, Husmeier JD, Rezek I, Penny W (1998) Bayesian approaches to Gaussian mixture modeling. IEEE Trans Pattern Anal Mach Intell 20(11):1133–1142

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Subasi A, Alkan A, Koklukaya E, Kiymik MK (2005) Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Netw 18:985–997

    Article  Google Scholar 

  • Tiku ML, Wong WK, Bian G (1999) Estimating parameters in autoregressive models in non-normal situations; symmetric innovations. Commun Stat Theory Methods 28:315–341

    Article  MathSciNet  MATH  Google Scholar 

  • Wong CS, Li WK (2001) On a mixture autoregressive conditional heteroscedastic model. J Am Stat Assoc Ser B 96:982–995

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions, corrections and encouragement, which helped us to improve the earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Nematollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, M., Nematollahi, A.R. Autoregressive Models with Mixture of Scale Mixtures of Gaussian Innovations. Iran J Sci Technol Trans Sci 41, 1099–1107 (2017). https://doi.org/10.1007/s40995-017-0237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0237-6

Keywords

Navigation