Skip to main content
Log in

Geometry of the Universe Described by Wet Dark Fluid in f(R, T) Theory of Gravity

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The Bianchi type-III cosmological model in \(f(R,T)\) gravity is investigated with the equation of state for wet dark fluid, i.e., \(P_{\text{WDF}} = \omega (P_{\text{WDF}} - \rho^{*} )\). Using volumetric and power-law expansion, we obtained the exact solution of the field equations. The various astrophysical phenomena, namely, the look-back time, proper distance, luminosity distance, angular diameter, jerk parameter, and cosmic snap with red shift and state-finder parameters, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhav KS (2011) Statefinder diagnostic for variable modified chaplygin gas in Bianchi type-V universe. Astrophys Space Sci 335:611

    Article  Google Scholar 

  • Adhav KS et al (2011) Einstein–Rosen universe with wet dark fluid in general relativity. Int J Theor Phys 50:164

    Article  MathSciNet  MATH  Google Scholar 

  • Adhav KS (2012) LRS Bianchi type-I cosmological model in f(R, T) theory of gravity. Astrophys Space Sci 339:365

    Article  MATH  Google Scholar 

  • Akarsu O, Kilinc CB (2010) Bianchi type-III models with anisotropic dark energy. Gen Relat Gravit 42:763

    Article  MathSciNet  MATH  Google Scholar 

  • Armendariz-Picon C et al (2001) Essentials of k-essence. Phys Lett D 63:103510

    Google Scholar 

  • Babicher E et al (2004) Dark energy cosmology with generalized linear equation of state. arXiv:astro-ph/0407190

  • Barreiro T et al (2000) Quintessence arising from exponential potentials. Phys Rev D 61:127301

    Article  Google Scholar 

  • Blake C et al (2011) The WiggleZ Dark Energy Survey: mapping the distance-red shift relation with baryon acoustic oscillations. Mon Not R Astron Soc 418:1707

    Article  Google Scholar 

  • Cai YF et al (2010) Quintom cosmology: theoretical implications and observations. Phys Rep 493:1

    Article  MathSciNet  Google Scholar 

  • Caldwell RR (2002) A phantom menace? Cosmological consequences of a dark energy component with super negative equation of state. Phys Lett B 545:23

    Article  Google Scholar 

  • Caldwell RR et al (1998) Cosmological imprint of an energy component with general equation of state. Phys Rev Lett 80:1582

    Article  Google Scholar 

  • Carroll SM (2003) Can the dark energy equation-of-state parameter w be less than −1?. Phys Rev D 68:023509

    Article  Google Scholar 

  • Chaubey R, Shukla AK (2013) A new class of Bianchi cosmological models in f(R, T) gravity. Astrophys Space Sci 343:415

    Article  MATH  Google Scholar 

  • Chiba T et al (1997) Cosmology with x-matter. Mon Not R Astron Soc 289:L5

    Article  Google Scholar 

  • Cognola G et al (2008) Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys Rev D 77:046009

    Article  Google Scholar 

  • Copeland EJ et al (2006) Dynamics of dark energy. Int J Mod Phys D 15:1753

    Article  MathSciNet  MATH  Google Scholar 

  • Copozziello S et al (2007) Reconstruction of the scalar–tensor Lagrangian from a ΛCDM background and Noether symmetry. Astropart Phys 0712:009

    Article  MathSciNet  Google Scholar 

  • Copozziello S et al (2009) Noether symmetry approach in phantom quintessence cosmology. Phys Rev D 80:104030

    Article  Google Scholar 

  • De Felice A, Tsujikawa S (2010) f(R) theories. Living Rev Relat 13:3

    Article  MATH  Google Scholar 

  • Dvali G, Turner MS (2003) Dark energy as a modification of the Friedmann equation. arXiv:astro-ph/0301510

  • Dvali G et al (2000) 4D gravity on a brane in 5D Minkowski space. Phys Lett B 485:208

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenstein DJ et al (2005) Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J 633:560

    Article  Google Scholar 

  • Elizalde E et al (2004) Late-time cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up. Phys Rev D 70:043539

    Article  Google Scholar 

  • Elizalde E et al (2011) Nonsingular exponential gravity: a simple theory for early- and late-time accelerated expansion. Phys Rev D 83:086006

    Article  Google Scholar 

  • Freese K (2003) Generalized cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating. Nucl Phys (Proc Suppl) B 124:50

    Article  Google Scholar 

  • Freese K, Lewis M (2002) Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating. Phys Lett B 540:1

    Article  MathSciNet  MATH  Google Scholar 

  • Frieman J et al (2008) Dark energy and the accelerating universe. Annu Rev Astron Astrophys 46:385

    Article  Google Scholar 

  • Gonzalez-Diaz PF (2004) k-essential phantom energy: doomsday around the corner? Phys Lett B 586:1

    Article  Google Scholar 

  • Harko T et al (2011) f(R, T) gravity. Phys Rev D 84:024020

    Article  Google Scholar 

  • Hayward ATJ (1967) Compressibility equations for liquids: a comparative study. Br J Appl Phys 18:965

    Article  Google Scholar 

  • Holman R, Naidu S (2005) Dark energy from a wet dark fluid. arXiv:astro-ph/0408102v3

  • Houndjo MJS (2012) Reconstruction of f(R, T) gravity describing matter dominated and accelerated phases. Int J Mod Phys D 21:1250003

    Article  MathSciNet  MATH  Google Scholar 

  • Jamil M et al (2011) Noether symmetry approach in f(R)-tachyon model. Phys Lett B 702:315

    Article  Google Scholar 

  • Jamil M et al (2012) Resolution of dark matter problem in f(T) gravity. Eur Phys J C 72:2122

    Article  Google Scholar 

  • Knop RA et al (2003) New constraints on ΩM, ΩΛ, and w from an independent set of 11 high-redshift supernovae observed with the hubble space telescope. Astrophys J 598:102

    Article  Google Scholar 

  • Komatsu E et al (2011) Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys J 192:18

    Article  Google Scholar 

  • Myrzakulov R (2012a) Cosmology of f(T) gravity and k-essence. Entropy 14:1627

    Article  MathSciNet  MATH  Google Scholar 

  • Myrzakulov R (2012b) f(T) gravity and k-essence. Gen Relat Gravit. arXiv:1008.4486

  • Nojiri S, Odintsov SD (2006) Modified f(R) gravity consistent with realistic cosmology: from matter dominated epoch to dark energy universe. Phys Rev D 74:086005

    Article  Google Scholar 

  • Ostiriou TP, Faraoni V (2010) f(R) theories of gravity. Rev Mod Phys 82:451

    Article  MathSciNet  MATH  Google Scholar 

  • Padmanabhan T (2003) Cosmological constant—the weight of the vacuum. Phys Rep 380:235

    Article  MathSciNet  MATH  Google Scholar 

  • Peebles PJE, Ratra B (2003) The cosmological constant and dark energy. Rev Mod Phys 75:559

    Article  MathSciNet  MATH  Google Scholar 

  • Percival WJ et al (2010) Baryon acoustic oscillations in the Sloan Digital Sky survey data release 7 galaxy samples. Mon Not R Astron Soc 401:2148

    Article  Google Scholar 

  • Perlmutter S et al (1998) Measurements of omega and lambda from 42 high redshift supernovae. Astrophys J 157:565

    Google Scholar 

  • Perlmutter S et al (1999) Measurements of \(\varOmega\) and \(\varLambda\) from 42 high-red shift supernovae. Astrophys J 517:565

  • Rao VUM, Neellima D (2013) Non-static plane symmetric Zeldovich universe in a modified theory of gravity. Eur Phys J Plus 128:35

    Article  Google Scholar 

  • Ratra B, Peebles PJE (1998) Cosmological consequences of a rolling homogeneous scalar field. Phys Rev D 37:3406

    Article  Google Scholar 

  • Reddy DRK et al (2012a) Kaluza–Klein cosmological model in f(R, T) gravity. Int J Theor Phys 51:322

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy DRK et al (2012b) Bianchi type-III cosmological model in f(R, T) theory of gravity. Astrophys Space Sci 342:249

    Article  MATH  Google Scholar 

  • Reddy DRK et al (2013) Bianchi type-III dark energy model in f(R, T) gravity. Int J Theor Phys 52:239

    Article  MathSciNet  MATH  Google Scholar 

  • Riess AG et al (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J 116:1109

    Article  Google Scholar 

  • Riess AG et al (2004) Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys J 607:665

    Article  Google Scholar 

  • Sahni V (2004) Dark matter and dark energy. arXiv:astro-ph/0403324

  • Samanta GC (2013) Kantowski–Sachs universe filled with perfect fluid in f(R, T) theory of gravity. Int J Theor Phys 52:2647

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta GC, Dhala SN (2013) Universe filled with a binary mixture of perfect fluid and dark energy. Int J Theor Phys 52:1334

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta GC et al (2013) Five dimensional bulk viscous cosmological models with wet dark fluid in general relativity. Astrophys Space Sci 346:233

    Article  MATH  Google Scholar 

  • Samanta GC et al (2014) Universe described by dark energy in the form of wet dark fluid (WDF) in higher dimensional space time. Eur Phys J Plus 129:48

    Article  Google Scholar 

  • Setare MR, Jamil M (2011) Statefinder diagnostic and stability of modified gravity consistent with holographic and agegraphic dark energy. Gen Relat Gravit 43:293

    Article  MathSciNet  MATH  Google Scholar 

  • Singh T, Chaubey R (2008) Bianchi type-I universe with wet dark fluid. Pramana J Phys 71:447

    Article  Google Scholar 

  • Tait PG (1888) The voyage of H.M.S. challenger, vol. 2. H.M.S.O., London, pp 1–73

  • Tonry JL et al (2003) Cosmological results from high-z supernovae. Astrophys J 594:1

    Article  Google Scholar 

  • Tsujikawa S (2010) Modified gravity models of dark energy. Lect Notes Phys 800:99

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, G.C., Bishi, B.K. Geometry of the Universe Described by Wet Dark Fluid in f(R, T) Theory of Gravity. Iran J Sci Technol Trans Sci 41, 223–230 (2017). https://doi.org/10.1007/s40995-017-0215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0215-z

Keywords

Navigation