Skip to main content
Log in

Analysis of U-shaped NEMS in the Presence of Electrostatic, Casimir, and Centrifugal Forces Using Consistent Couple Stress Theory

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

A mathematical model is used to study the effects of the electrostatic, Casimir and centrifugal forces on the static behaviors of the two U-shaped NEMS with rectangular and circular geometries. The size-dependent equations are obtained by employing the consistent couple stress theory (CCST). The D’Alembert principle is used to transform the angular speed into an equivalent static centrifugal force. The equivalent boundary condition technique is applied for obtaining the governing equation of the U-shape actuator. The nonlinear equations are solved by two different approaches, i.e., using a distributed parameter model (in conjunction with Rayleigh–Ritz solution method) and a lumped parameter model. The model is validated by comparing the obtained results with those of experiment as well as finite element simulation. The effect of various parameters on the instability threshold and characteristics of the system is discussed. The obtained results are beneficial for design and fabrication of U-shaped sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi J, Koochi A, Kazemi AS, Abadyan M (2011) Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Mater Struct 20(5):055011

    Article  Google Scholar 

  • Azimloo H, Rezazadeh G, Shabani R, Sheikhlou M (2014) Bifurcation analysis of an electro-statically actuated micro-beam in the presence of centrifugal forces. Int J Nonlinear Mech 67:7–15

    Article  Google Scholar 

  • Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105

    Article  Google Scholar 

  • Bodson M, Chiasson J, Novotnak RT (1995) Nonlinear speed observer for high-performance induction motor control. Ind Electron IEEE Trans 42(4):337–343

    Article  Google Scholar 

  • Bordag M, Mohideen U, Mostepanenko VM (2001) New developments in the Casimir effect. Phys Rep 353(1):1–205

    Article  MathSciNet  MATH  Google Scholar 

  • Ejike U (1969) The plane circular crack problem in the linearized couple-stress theory. Int J Eng Sci 7:947–961

    Article  MATH  Google Scholar 

  • Emig T, Jaffe RL, Kardar M, Scardicchio A (2006) Casimir interaction between a plate and a cylinder. Phys Rev Lett 96(8):080403

    Article  Google Scholar 

  • Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Fakhrabadi MMS, Yang J (2015) Comprehensive nonlinear electromechanical analysis of nanobeams under DC/AC voltages based on consistent couple-stress theory. Compos Struct 132:1206–1218

    Article  Google Scholar 

  • Farrokhabadi A, Mokhtari J, Rach R, Abadyan M (2015a) Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers. Int J Mod Phys B 29(02):1450245

    Article  MATH  Google Scholar 

  • Farrokhabadi A, Mokhtari J, Koochi A, Abadyan M (2015b) A theoretical model for investigating the effect of vacuum fluctuations on the electromechanical stability of nanotweezers. Indian J Phys 89(6):599–609

    Article  Google Scholar 

  • Gupta RK (1997) Electrostatic pull-in test structure design for in situ mechanical property measurements of microelectromechanical systems. PhD Dissertation Massachusetts Institute of Technology (MIT), Cambridge, MA

  • Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(18):2496–2510

    Article  Google Scholar 

  • Hayt WH (1981) Engineering electromagnetics. McGraw-Hill, New York

    Google Scholar 

  • Hou C, Wu Y, Zeng X, Zhao S, Zhou Q, Yang G (2010) Novel high sensitivity accelerometer based on a microfiber loop resonator. Opt Eng 49(1):014402

    Article  Google Scholar 

  • Huang CT, Li PN, Pai CY, Leu TS, Jen CP (2009) Design and simulation of a microfluidic blood-plasma separation chip using microchannel structures. Sep Sci Technol 45(1):42–49

    Article  Google Scholar 

  • Jackson JD (1998) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  • Jywe WY, Chen CJ (2005) The development of a high-speed spindle measurement system using a laser diode and a quadrants sensor. Int J Mach Tools Manuf 45(10):1162–1170

    Article  Google Scholar 

  • Ke CH, Espinosa HD (2006) Nanoelectromechanical systems (NEMS) and modeling. Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, Valencia

    Google Scholar 

  • Keivani M, Khorsandi J, Mokhtari J, Kanani A, Abadian N, Abadyan M (2016a) Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force. Acta Astronaut 119:196–206

    Article  Google Scholar 

  • Keivani M, Kanani A, Mardaneh MR, Mokhtari J, Abadyan N, Abadyan M (2016b) Influence of accelerating force on the electromechanical instability of paddle-type and double-sided sensors made of nanowires. Int J Appl Mech 8(01):1650011

    Article  Google Scholar 

  • Keivani M, Koochi A, Abadyan M (2016c) A new model for stability analysis of electromechanical nano-actuator based on Gurtin-Murdoch and consistent couple-stress theories. J VibroEng 18(3):1406–1416

    Article  Google Scholar 

  • Keivani M, Gheisari R, Kanani A, Abadian N, Mokhtari J, Rach R, Abadyan M (2016d) Effect of the centrifugal force on the electromechanical instability of U-shaped and double-sided sensors made of cylindrical nanowires. J Braz Soc Mech Sci Eng 38(7):2129–2148

    Article  Google Scholar 

  • Keivani M, Abadian N, Koochi A, Mokhtari J, Abadyan M (2016e) A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner. Appl Phys A 122(10):927

    Article  Google Scholar 

  • Keplinger F, Beigelbeck R, Kohl F, Kvasnica S, Jachimowicz A, Jakoby B (2005) Frequency and transient analysis of micromachined U-shaped cantilever devices for magnetic field measurement. Poster: 13th European Conference on Solid-State Sensors Actuators and Microsystems, Seoul, Korea; 06-05-2005–06-09-2005; in: “Digest of Technical Papers” ISBN: 0-7803-8994-8; 630–635

  • Kopka P, Hoffmann M, Voges E (2000) Coupled U-shaped cantilever actuators for 1 × 4 and 2 × 2 optical fibre switches. J Micromech Microeng 10(2):260

    Article  Google Scholar 

  • Koukharenko E, Beeby SP, Tudor MJ, White NM, O’Donnell T, Saha C, Kulkarni C, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst Technol 12(10–11):1071–1077

    Article  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Latorre L, Nouet P, Bertrand Y, Hazard P, Pressecq F (1999) Characterization and modeling of a CMOS-compatible MEMS technology. Sensors Actuators A: Phys 74(1):143–147

    Article  Google Scholar 

  • Lebold MS, Maynard K, Reichard K, Trethewey M, Bieryla D, Lissenden C, Dobbins D (2004) Using torsional vibration analysis as a synergistic method for crack detection in rotating equipment. In: Aerospace conference, proceedings 2004 IEEE (Vol 6, pp 3517–3527)

  • Lee KB (2007) Closed-form solutions of the parallel plate problem. Sens Actuators A: Phys 133(2):518–525

    Article  Google Scholar 

  • Lin WH, Zhao YP (2005a) Nonlinear behavior for nanoscale electrostatic actuators with Casimir force. Chaos, Solitons Fractals 23(5):1777–1785

    Article  MATH  Google Scholar 

  • Lin WH, Zhao YP (2005b) Casimir effect on the pull-in parameters of nanometer switches. Microsyst Technol 11(2–3):80–85

    Article  Google Scholar 

  • Lin WH, Zhao YP (2008) Pull-in instability of micro-switch actuators: model review. Int J Nonlinear Sci Numer Simul 9(2):175–184

    Article  Google Scholar 

  • McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060

    Article  Google Scholar 

  • Mokhtari J, Farrokhabadi A, Rach R, Abadyan M (2015) Theoretical modeling of the effect of Casimir attraction on the electrostatic instability of nanowire-fabricated actuators. Phys E: Low-dimension Syst Nanostruct 68:149–158

    Article  MATH  Google Scholar 

  • Mouloodi S, Khojasteh J, Salehi M, Mohebbi S (2014) Size dependent free vibration analysis of multicrystalline nanoplates by considering surface effects as well as interface region. Int J Mech Sci 85:160–167

    Article  Google Scholar 

  • Qian Y, Lou L, Tsai MJ, Lee C (2012) A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage. Appl Phys Lett 100(11):113102

    Article  Google Scholar 

  • Renaudin L, Bonnardot F, Musy O, Doray JB, Rémond D (2010) Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mech Syst Signal Process 24(7):1998–2011

    Article  Google Scholar 

  • Rezazadeh M, Tahani M, Hosseini SM (2015) Thermoelastic damping in a nonlocal nano-beam resonator as NEMS based on the type III of Green-Naghdi theory (with energy dissipation). Int J Mech Sci 92:304–311

    Article  Google Scholar 

  • Shah-Mohammadi-Azar A, Azimloo H, Rezazadeh G, Shabani R, Tousi B (2013) On the modeling of a capacitive angular speed measurement sensor. Measurement 46(10):3976–3981

    Article  Google Scholar 

  • Yan D, Khajepour A, Mansour R (2004) Design and modeling of a MEMS bidirectional vertical thermal actuator. J Micromech Microeng 14(7):841

    Article  Google Scholar 

  • Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  • Zhang J, Fu Y (2012) Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47(7):1649–1658

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu HX (2010) Size-dependent elastic properties of micro-and nano-honeycombs. J Mech Phys Solids 58(5):696–709

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keivani, M., Mokhtari, J., Abadian, N. et al. Analysis of U-shaped NEMS in the Presence of Electrostatic, Casimir, and Centrifugal Forces Using Consistent Couple Stress Theory. Iran J Sci Technol Trans Sci 42, 1647–1658 (2018). https://doi.org/10.1007/s40995-017-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0151-y

Keywords

Navigation