Skip to main content
Log in

Click Synthesis of 1-Aryl-1,2,3-Triazole Derivatives Catalyzed by Recyclable Ligand Complex of Copper(II) Supported on Superparamagnetic Fe3O4@SiO2 Nanoparticles

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

We report a recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticle catalytic system for efficiently synthesis of 1-aryl-1,2,3-triazole derivatives in excellent yields. The desired triazoles were obtained from the reaction of the corresponding aryl bronic acid derivatives, alkyne, NaN3, and 2.0 mol % of the catalyst in H2O as the green solvent at 60 °C without the additional use of external reducing agent. The mechanism revealed that sodium azide, which is used as azidonating reagent in one-pot protocol reduces Cu(II) to click-active Cu(I). The suggested method offers several advantages such as excellent yields, short reaction time, operational simplicity, a cleaner reaction, and absence of any tedious workup or purification. In addition, the excellent catalytic performance in a water medium and the thermal stability, easy preparation and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the aforementioned catalyst can be easily recovered by an external magnetic field and reused for subsequent reactions at least eight times without noticeable deterioration in catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  • Abramson S, Safraou W, Malezieux B, Dupuis V, Borensztajn S, Briot E, Bée A (2011) An eco-friendly route to magnetic silica microspheres and nanospheres. J Colloid Interface Sci 364:324–332

    Article  Google Scholar 

  • Amantini D, Fringuelli F, Piermatti O, Pizzo F, Zunino E, Vaccaro L (2005) Synthesis of 4-Aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-Aryl-1-nitroethenes with TMSN3 under solvent-free conditions. J Org Chem 70:6526–6529

    Article  Google Scholar 

  • Chassaing S, Sido ASS, Alix A, Kumarraja M, Pale P, Sommer J (2008) Click Chemistry in zeolites: copper(I) zeolites as new heterogeneous and ligand-free catalysts for the Huisgen [3 + 2] cycloaddition. Chem Eur J 14:6713–6721

    Article  Google Scholar 

  • Chen FH, Gao Q, Ni JZ (2008) The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology. 2008(19):165103

    Article  Google Scholar 

  • Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  Google Scholar 

  • Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D (2010) Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J Am Chem Soc 132:8466–8473

    Article  Google Scholar 

  • Esmaeilpour M, Javidi J, Nowroozi Dodeji F, Abarghoui MM (2014) M(II) Schiff base complexes (M 5 zinc, manganese, cadmium, cobalt, copper, nickel, iron, and palladium) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: synthesis, characterization and catalytic activity for Sonogashira-Hagihara coupling reactions. Transit Met Chem 39:797–809

    Article  Google Scholar 

  • Esmaeilpour M, Javidi J, Zandi M (2015) One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4@SiO2-imid-PMAn magnetic porous nanospheres as a recyclable catalyst. New J Chem 39:3388–3398

    Article  Google Scholar 

  • Frank E, Molnár J, Zupkó I, Kádár Z, Wölfling J (2011) Synthesis of novel steroidal 17α-triazolyl derivatives via Cu(I)-catalyzed azide-alkyne cycloaddition, and an evaluation of their cytotoxic activity in vitro. Steroids 76:1141–1148

    Article  Google Scholar 

  • Girard C, Önen E, Aufort M, Beauvière S, Samson E, Herscovici J (2006) Reusable polymer-supported catalyst for the [3 + 2] Huisgen cycloaddition in automation protocols. Org Lett 8:1689–1692

    Article  Google Scholar 

  • Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216

    Article  Google Scholar 

  • Jacob K, Stolle A, Ondruschka B, Jandt KD, Keller TF (2013) Cu on porous glass: an easily recyclable catalyst for the microwave-assisted azide–alkyne cycloaddition in water. Appl Catal A Gen 451:94–100

    Article  Google Scholar 

  • Javidi J, Esmaeilpour M (2013) Synthesis of Fe3O4@silica/poly(N-isopropylacrylamide) as a novel thermo-responsive system for controlled release of H3PMo12O40 nano drug in AC magnetic field. Colloid Surf B. 102:265–272

    Article  Google Scholar 

  • Javidi J, Esmaeilpour M, Nowroozi Dodeji F (2015) Immobilization of phosphomolybdic acid nanoparticles on imidazole functionalized Fe3O4@SiO2: a novel and reusable nanocatalyst for one-pot synthesis of Biginelli-type 3,4-dihydropyrimidine-2-(1H)-ones/thiones under solvent-free conditions. RSC Adv. 5:308–315

    Article  Google Scholar 

  • Jiang Y, Kuang C, Yang Q (2009) The use of calcium carbide in the synthesis of 1-monosubstituted aryl 1,2,3-triazole via click chemistry. Synlett 3163–3166

  • Jlalia I, Gallier F, Brodie-Linder N, Uziel J, Augé J, Lubin-Germain N (2014) Copper(II) SBA-15: a reusable catalyst for azide-alkyne cycloaddition. J Mol Catal A Chem 393:56–61

    Article  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 107:668–677

    Article  Google Scholar 

  • Lipshutz BH, Taft BR (2006) Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45:8235–8238

    Article  Google Scholar 

  • Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  Google Scholar 

  • Masuyama Y, Yoshikawa K, Suzuki N, Hara K, Fukuoka A (2011) Hydroxyapatite-supported copper(II)-catalyzed azide–alkyne [3 + 2] cycloaddition with neither reducing agents nor bases in water. Tetrahedron Lett 52:6916–6918

    Article  Google Scholar 

  • Meldal M, Tomøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  Google Scholar 

  • Miao T, Wang L (2008) Regioselective synthesis of 1,2,3-triazoles by use of a silica-supported copper(I) catalyst. Synthesis 363–368

  • Mohammed S, Padala AK, Dar BA, Singh B, Sreedhar B, Vishwakarma RA, Bharate SB (2012) Recyclable clay supported Cu (II) catalyzed tandem one-pot synthesis of 1-aryl-1,2,3-triazoles. Tetrahedron 68:8156–8162

    Article  Google Scholar 

  • Namitharan K, Kumarraja M, Pitchumani K (2009) CuII–Hydrotalcite as an efficient heterogeneous catalyst for Huisgen [3 + 2] cycloaddition. Chem Eur J 15:2755–2758

    Article  Google Scholar 

  • Reiss G, Hütten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726

    Article  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Article  Google Scholar 

  • Schweinfurth D, Strobel S, Sarkar B (2011) Expanding the scope of ‘Click’ derived 1,2,3-triazole ligands: new palladium and platinum complexes. Inorg Chim Acta 374:253–260

    Article  Google Scholar 

  • Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077

    Article  Google Scholar 

  • Wu H, Tang L, An L, Wang X, Zhang H, Shi J, Yang S (2012) pH- responsive magnetic mesoporous silica nanospheres for magnetic resonance imaging and drug delivery. React Funct Polym 72:329–336

    Article  Google Scholar 

  • Xia Y, Fan Z, Yao J, Liao Q, Li W, Qu F, Peng L (2006) Discovery of bitriazolyl compounds as novel antiviral candidates for combating the tobacco mosaic virus. Bioorg Med Chem Lett 16:2693–2698

    Article  Google Scholar 

  • Young Kim J, Chan Park J, Kang H, Song H, Hyun Park K (2010) CuO hollow nanostructures catalyze [3 + 2] cycloaddition of azides with terminal alkynes. Chem Commun 46:439–441

    Article  Google Scholar 

  • Zhang J, Sun W, Bergman L, Rosenholm JM, Lindén M, Wu G, Xu H, Gu HC (2012) Magnetic mesoporous silica nanospheres as DNA/drug carrier. Mater Lett 67:379–382

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation and University of Shiraz for their unending effort to provide financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Esmaeilpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilpour, M., Javidi, J. & Davan, E.E. Click Synthesis of 1-Aryl-1,2,3-Triazole Derivatives Catalyzed by Recyclable Ligand Complex of Copper(II) Supported on Superparamagnetic Fe3O4@SiO2 Nanoparticles. Iran J Sci Technol Trans Sci 42, 487–496 (2018). https://doi.org/10.1007/s40995-016-0125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0125-5

Keywords

Navigation