Skip to main content
Log in

Universe Described by Kaluza–Klein Space Time with Viscous Modified Cosmic Chaplygin Gas in General Relativity

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this paper, we constructed Kaluza–Klein FRW model with modified cosmic Chaplygin gas in presence of bulk viscosity. We used exponential function method (Ganji and Hasheni Kachapi 2011) to solve non-linear differential equation and obtained time dependent dark energy density. We explained the nature of the energy density for different values of parameters through graphical representation briefly. Also, we investigated the nature of the energy density with and without bulk viscosity. Finally we discussed stability of this theory and obtained that, the model does not have any singularity in presence and absence of bulk viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afshordi N, Chung DJH, Geshnizjani G (2007) Causal field theory with an infinite speed of sound. Phys Rev D 75:083513

    Article  MathSciNet  Google Scholar 

  • Amani AR, Pourhassan B (2013) Viscous generalized Chaplygin gas with arbitrary α. Int J Theor Phys 52:1309

    Article  MathSciNet  MATH  Google Scholar 

  • Appelquist T, Chodos A, Freund PGO (1987) Modern Kaluza–Klein theories. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Benaoum HB (2012) Modified Chaplygin gas cosmology. Adv High Energy Phys 2012:357802. doi:10.1155/2012/357802

    Article  MathSciNet  MATH  Google Scholar 

  • Bali R, Jain DR (1988) Some expanding and shearing viscous fluid cosmological models in general relativity. Astrophys Space Sci 141:207

    Article  MathSciNet  MATH  Google Scholar 

  • Bali R, Jain DR (1991) Viscous fluid universe filled with stiff fluid in general relativity. Astrophys Space Sci 185:211

    Article  MathSciNet  MATH  Google Scholar 

  • Bali R, Kumawat P (2008) Bulk viscous LRS Bianchi type V tilted stiff fluid cosmological model in general relativity. Phys Lett B 665:332

    Article  MathSciNet  MATH  Google Scholar 

  • Bali R, Pradhan A (2007) Bianchi type-III string cosmological models with time dependent bulk viscosity. Chin Phys Lett 24:585

    Article  Google Scholar 

  • Banerjee A, Santos NO (1986) Homogeneous anisotropic cosmological models with viscous fluid and magnetic field. Gen Relativ Gravit 18:1251

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee A, Duttachoudhury SB, Sanyal AK (1986) Bianchi type-II cosmological model with viscous fluid. Gen Relativ Gravit 18:461

    Article  MathSciNet  MATH  Google Scholar 

  • Bazeia D (1999) Galileo invariant system and the motion of relativistic d-branes. Phys Rev D 59:085007

    Article  MathSciNet  Google Scholar 

  • Bento MC, Bertolami O, Sen AA (2002) Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys Rev D 66:43507

    Article  Google Scholar 

  • Bento MC, Bertolami D, Sen AA (2003) WMAP constraints on the generalized Chaplygin gas model. Phys Lett B 575:172

    Article  Google Scholar 

  • Bilic N, Tupper GB, Viollier RD (2002) Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys Lett B 535:17

    Article  MATH  Google Scholar 

  • Bordemann M, Hoppe J (1993) The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics. Phys Lett B 317:315

    Article  MathSciNet  Google Scholar 

  • Caldwell RR (2002) A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys Lett B 545:23

    Article  Google Scholar 

  • Capozziello S, Cardone VF, Farajollahi H, Ravanpak A (2011) Cosmography in f (T) gravity. Phys Rev D 84:043527

    Article  Google Scholar 

  • Chao LJ, Li-Xin X, Jian-Bo L, Rong CB, Hong-Ya L (2008) Constraints on deceleration parameter of a 5D bounce cosmological model from recent cosmic observations. Chin Phys Lett 25:802

    Article  Google Scholar 

  • Chaplygin S (2004) On gas jets. Sci Mem Moscow Univ Math Phys 21:1

    Google Scholar 

  • Cline JM, Jeon S, Moore GD (2004) The phantom menaced: constraints on low-energy effective ghosts. Phys Rev D 70:043543

    Article  Google Scholar 

  • Collins PDB, Martin AD, Squires EJ (1989) Particle physics and cosmology. Wiley, London

    Book  Google Scholar 

  • Debnath U, Banerjee A, Chakraborty S (2004a) Role of modified Chaplygin gas in accelerated universe. Class Quantum Gravity 21:5609

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath U, Banerjee A, Chakraborty S (2004b) Role of modified Chaplygin gas in accelerated universe. Class Quantum Gravity 21:5609

    Article  MathSciNet  MATH  Google Scholar 

  • Fabris JC, Goncalves SVB, De Souza PE (2002) Letter: density perturbations in a universe dominated by the Chaplygin gas. Gen Relativ Gravit 34:53

    Article  MATH  Google Scholar 

  • Feng B, Wang XL, Zhang XM (2005) Dark energy constraints from the cosmic age and supernova. Phys Lett B 607:35

    Article  Google Scholar 

  • Ganji DD, Hasheni Kachapi SH (2011) Analytical and numerical methods in engineering and applied sciences. Prog Non Linear Sci 3:1

    Google Scholar 

  • Gonzalez-Diez PF (2003) You need not be afraid of phantom energy. Phys Rev D 68:021303

    Article  Google Scholar 

  • Gorini V, Kamenshchik A, Moschella U (2003) Can the Chaplygin gas be a plausible model for dark energy? Phys Rev D 67:063509

    Article  Google Scholar 

  • Heller M, Klimek Z (1975) Viscous universes without initial singularity. Astrophys Space Sci 33:L37

    Google Scholar 

  • Jackiw R, Polychronakos AP (2000) Supersymmetric fluid mechanics. Phys Rev D 62:085019

    Article  MathSciNet  Google Scholar 

  • Johri VB, Sudarshan R (1988) Friedmann universes with bulk viscosity. Phys Lett A 132:316

    Article  MathSciNet  Google Scholar 

  • Kaluza T (1921) Zum unitätsproblem der physik. Zum Unitatsproblem der Physik Sitz Press Akad Wiss Phys Math K 1:966

    MATH  Google Scholar 

  • Kamenshchik A, Moschella U, Pasquier V (2001) An alternative to quintessence. Phys Lett B 511:265

    Article  MATH  Google Scholar 

  • Klein O (1926) Quantum theory and five dimensional theory of relativity (In German and English). Zeits Phys 37:895

    Article  Google Scholar 

  • Lee HC (1984) An introduction to Kaluza–Klein theories. World Scientific, Singapore

    Google Scholar 

  • Lu J, Xu L, Li J, Chang B, Gui Y, Liu H (2008) Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models. Phys Lett B 662:87

    Article  Google Scholar 

  • Lu J, Xu L, Liu M (2011) Constraints on kinematic models from the latest observational data. Phys Lett B 699:246

    Article  Google Scholar 

  • Mahanta KL (2014) Bulk viscous cosmological models in f (R,T) theory of gravity. Astrophys Space Sci 353:683

    Article  Google Scholar 

  • Makler M, de Oliveira SQ, Waga I (2003) Constraints on the generalized Chaplygin gas from supernovae observations. Phys Lett B 555:1

    Article  Google Scholar 

  • Mazumdar N, Biswas R, Chakraborty S (2012) FRW cosmological model with modified Chaplygin gas and dynamical system. Int J Theor Phys 51:2754

    Article  MATH  Google Scholar 

  • Misner CW (1967) Transport processes in the primordial fireball. Nature 214:40

    Article  Google Scholar 

  • Misner CW (1968) The isotropy of the universe. Astrophys J 151:431

    Article  Google Scholar 

  • Mohanty G, Pattanaik RR (1991) Anisotropic, spatially homogeneous, bulk viscous cosmological model. Int J Theor Phys 30:239

    Article  MathSciNet  Google Scholar 

  • Mohanty G, Samanta GC (2009) Five dimensional axially symmetric string cosmological models with bulk viscous fluid. Int J Theor Phys 48:2311

    Article  MathSciNet  MATH  Google Scholar 

  • Overduin JM, Wesson PS (1997) Kaluza–klein gravity. Phys Rep 283:303

    Article  MathSciNet  Google Scholar 

  • Padmanabhan T (2003) Cosmological constant—the weight of the vacuum. Phys Rep 380:235

    Article  MathSciNet  MATH  Google Scholar 

  • Padmanabhan T, Chitre SM (1987) Viscous universes. Phys Lett A 120:433

    Article  Google Scholar 

  • Perlmutter S et al (1999) Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J 517:565

    Article  Google Scholar 

  • Pradhan A, Pandey P (2004) Some Bianchi type-I viscous fluid cosmological models with a variable cosmological constant. Astrophys Space Sci 30:127

    MATH  Google Scholar 

  • Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland Ron L et al (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116:1009

    Article  Google Scholar 

  • Ross GG (1984) Grand unified theories. Benjamin-Cummings, Massachusetts

    Google Scholar 

  • Roy SR, Prakash S (1976) Some viscous fluid cosmological models of plane symmetry. J Phys A Math Gen 9:261

    Article  Google Scholar 

  • Roy SR, Prakash S (1977) A gravitationally non-degenerate viscous fluid cosmological model in general relativity. Indian J Pure Appl Math 8:723

    MathSciNet  Google Scholar 

  • Saadat H, Farahani H (2013) Viscous Chaplygin gas in non-flat universe. Int J Theor Phys 52:1160

    Article  MathSciNet  MATH  Google Scholar 

  • Saadat H, Pourhassan B (2013) FRW bulk viscous cosmology with modified Chaplygin gas in flat space. Astrophys Space Sci 343:783

    Article  Google Scholar 

  • Sadeghi J, Setare MR, Amani AR, Noorbakhsh SM (2010) Bouncing universe and reconstructing vector field. Phys Lett B 685:229

    Article  Google Scholar 

  • Saha B (2005) Bianchi type I universe with viscous fluid. Mod Phys Lett A 20:2127

    Article  MathSciNet  MATH  Google Scholar 

  • Sahni V, Starobinsky AA (2000) The case for a positive cosmological Λ-term. Int J Mod Phys D 9:373

    Google Scholar 

  • Samanta GC, Biswal SK, Sahoo PK (2013a) Five dimensional bulk viscous String cosmological models in Saez and Ballester theory of gravitation. Int J Theor Phys 52:1504

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta GC, Dhal S, Mishra B (2013b) Five dimensional bulk viscous cosmological model with wet dark fluid in general relativity. Astrophys Space Sci 346:233

    Article  MATH  Google Scholar 

  • Sandvik HB, Tegmark M, Zaldarriage M, Waga L (2004) The end of unified dark matter? Phys Rev D 69:123524

    Article  Google Scholar 

  • Setare MR (2007) Interacting holographic generalized Chaplygin gas model. Phys Lett B 654:1

    Article  MATH  Google Scholar 

  • Setare MR (2009) Holographic Chaplygin DGP cosmologies. Int J Modif Phys D 18:419

    Article  MathSciNet  MATH  Google Scholar 

  • Setrae MR (2007) Holographic Chaplygin gas model. Phys Lett B 648:329

    Article  MATH  Google Scholar 

  • Spergel DN et al (2003) First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys J Supp 148:175

    Article  Google Scholar 

  • Tsien HS (1939) Two-dimensional subsonic flow of compressible fluids. J Aeronaut Sci 6:399

    Article  MathSciNet  MATH  Google Scholar 

  • Visser M (2004) Jerk, snap and the cosmological equation of state. Class Quantum Gravity 21:113

    MathSciNet  MATH  Google Scholar 

  • Wetterich C (1988) Cosmology and the fate of dilatation symmetry. Nucl Phys B 302:668

    Article  Google Scholar 

  • Xu YD, Huang ZG, Zhai XH (2012) Generalized Chaplygin gas model with or without viscosity in the w–w′ plane. Astrophys Space Sci 337:493

    Article  MATH  Google Scholar 

  • Zhai XH, Xu YD, Li XZ (2006) Viscous generalized Chaplygin gas. Int J Mod Phys D 15:1115

    Article  MATH  Google Scholar 

  • Zhu ZH (2004) Generalized Chaplygin gas as a unified scenario of dark matter/energy: observational constraints. Astron Astrophys 423:421

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, G.C., Bishi, B.K. Universe Described by Kaluza–Klein Space Time with Viscous Modified Cosmic Chaplygin Gas in General Relativity. Iran J Sci Technol Trans Sci 40, 245–254 (2016). https://doi.org/10.1007/s40995-016-0089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0089-5

Keywords

Navigation