Skip to main content
Log in

Number of solutions to a special type of unit equations in two unknowns, II

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

This paper contributes to the conjecture of R. Scott and R. Styer which asserts that for any fixed relatively prime positive integers ab and c all greater than 1 there is at most one solution to the equation \(a^x+b^y=c^z\) in positive integers xy and z, except for specific cases. The fundamental result proves the conjecture under some congruence condition modulo c on a and b. As applications the conjecture is confirmed to be true if c takes some small values including the Fermat primes found so far, and in particular this provides an analytic proof of the celebrated theorem of Scott (J Number Theory 44(2):153-165, 1993) solving the conjecture for \(c=2\) in a purely algebraic manner. The method can be generalized for smaller modulus cases, and it turns out that the conjecture holds true for infinitely many specific values of c not being perfect powers. The main novelty is to apply a special type of the p-adic analogue to Baker’s theory on linear forms in logarithms via a certain divisibility relation arising from the existence of two hypothetical solutions to the equation. The other tools include Baker’s theory in the complex case and its non-Archimedean analogue for number fields together with various elementary arguments through rational and quadratic numbers, and extensive computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

Notes

  1. Intel Core 7 11800H processor (with 8 cores) and 16GB of RAM

References

  1. Bennett, M.A.: On some exponential equations of S. S. Pillai. Can. J. Math. 53, 897–922 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bennett, M.A.: Pillai’s conjecture revisited. J. Number Theory 98, 228–235 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bennett, M.A., Ellenberg, J.S., Ng, N.C.: The Diophantine equation \(A^4+2^\delta B^2=C^n\). Int. J. Number Theory 6, 311–338 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bennett, M.A., Mihăilescu, P., Siksek, S.: The generalized Fermat equation. In: Open Problems in Mathematics, pp. 173–205. Springer (2016)

  5. Bertók, C., Hajdu, L.: A Hasse-type principle for exponential diophantine equations and its applications. Math. Comp. 85, 849–860 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comp. 85, 849–860 (2016)

    Google Scholar 

  7. Bruin, N.: The Diophantine equations \(x^2\pm y^4=\pm z^6\) and \(x^2+y^8=z^3\). Compos. Math. 118, 305–321 (1999)

    Article  Google Scholar 

  8. Bugeaud, Y.: Linear forms in two \(m\)-adic logarithms and applications to Diophantine problems. Compos. Math. 132, 137–158 (2002)

    Article  MathSciNet  Google Scholar 

  9. Bugeaud, Y.: Linear Forms in Logarithms and Applications. IRMA Lectures in Mathematics and Theoretical Physics, vol. 28. European Mathematical Society (2017)

  10. Bugeaud, Y., Laurent, M.: Minoration effective de la distance \(p\)-adique entre puissances de nombres algébriques. J. Number Theory 61, 311–342 (1996)

    Article  MathSciNet  Google Scholar 

  11. Cao, Z.F., Dong, X.L.: An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture. Acta Arith. 110, 153–164 (2003)

    Article  MathSciNet  Google Scholar 

  12. Cipu, M., Mignotte, M.: On a conjecture on exponential Diophantine equations. Acta Arith. 140, 251–269 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cohen, H.: Number Theory. Vol. II: Analytic and Modern Tools, Grad. Texts in Math., vol. 240. Springer, Berlin (2007)

    Google Scholar 

  14. Ellenberg, J.S.: Galois representations attached to \({{\mathbb{Q} }}\)-curves and the generalized Fermat equation \(A^4+B^2=C^p\). Am. J. Math. 126(4), 763–787 (2004)

    Article  Google Scholar 

  15. Evertse, J.H., Győry, K.: Unit Equations in Diophantine Number Theory. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  16. Guy, R.K.: Unsolved Problems in Number Theory. Springer, Berlin (2004)

    Book  Google Scholar 

  17. Hu, Y., Le, M.: A note on ternary purely exponential diophantine equations. Acta Arith. 171, 173–182 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hu, Y., Le, M.: An upper bound for the number of solutions of ternary purely exponential diophantine equations. J. Number Theory 183, 62–73 (2018)

    Article  MathSciNet  Google Scholar 

  19. Hu, Y., Le, M.: An upper bound for the number of solutions of ternary purely exponential diophantine equations II. Publ. Math. Debrecen 95, 335–354 (2019)

    Article  MathSciNet  Google Scholar 

  20. Laurent, M., Mignotte, M., Nesterenko, Y.: Formes linéaires en deux logarithmes et déterminants dínterpolation. J. Number Theory 55, 285–321 (1995)

    Article  MathSciNet  Google Scholar 

  21. Luca, F.: On the diophantine equation \(p^{x_1}-p^{x_2}=q^{y_1}-q^{y_2}\). Indag. Math. (N.S.) 14, 207–222 (2003)

    Article  MathSciNet  Google Scholar 

  22. Luca, F.: On the system of Diophantine equations \(a^2+b^2=(m^2+1)^r\) and \(a^x+b^y=(m^2+1)^z\). Acta Arith. 153, 373–392 (2012)

    Article  MathSciNet  Google Scholar 

  23. Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)

    MathSciNet  Google Scholar 

  24. Miyazaki, T.: Exceptional cases of Terai’s conjecture on Diophantine equations. Arch. Math. (Basel) 95, 519–527 (2010)

    Article  MathSciNet  Google Scholar 

  25. Miyazaki, T.: Contributions to some conjectures on a ternary exponential Diophantine equation. Acta Arith. 186, 1–36 (2018)

    Article  MathSciNet  Google Scholar 

  26. Miyazaki, T., Pink, I.: Number of solutions to a special type of unit equations in two unknowns. Am. J. Math. (to appear)

  27. Nagell, T.: Sur une classe d’équations exponentielles. Ark. Mat. 3, 569–582 (1958). ((in French))

    Article  MathSciNet  Google Scholar 

  28. Nakamula, K., Pethő, A.: Squares in binary recurrence sequences. In: Number Theory (Eger, 1996), pp. 409–421. de Gruyter (1998)

  29. Pillai, S.S.: On the inequality \(0<a^x-b^y \le n\). J. Indian Math. Soc. 19, 1–11 (1931)

    Google Scholar 

  30. Pillai, S.S.: On \(a^x-b^y=c\). J. Indian Math. Soc. (N.S.) 2, 119–122, 215 (1936)

  31. Scott, R.: On the equations \(p^x-b^y=c\) and \(a^x+b^y=c^z\). J. Number Theory 44, 153–165 (1993)

    Article  MathSciNet  Google Scholar 

  32. Scott, R., Styer, R.: On \(p^x-q^y=c\) and related three term exponential Diophantine equations with prime bases. J. Number Theory 105, 212–234 (2004)

    Article  MathSciNet  Google Scholar 

  33. Scott, R., Styer, R.: Number of solutions to \(a^x+b^y=c^z\). Publ. Math. Debrecen 88, 131–138 (2016)

    Article  MathSciNet  Google Scholar 

  34. Shorey, T.N., Tijdeman, R.: Exponential Diophantine Equations. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  35. Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. 3, 265–284 (1892)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for the helpful remarks and suggestions. We are also grateful to Mihai Cipu, Reese Scott, Robert Styer and Masaki Sudo for their many comments and remarks which improved an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Miyazaki.

Additional information

Dedicated to Professor Nobuhiro Terai on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by JSPS KAKENHI (No. 20K03553). The second author was supported by the NKFIH Grants ANN130909 and K128088.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, T., Pink, I. Number of solutions to a special type of unit equations in two unknowns, II. Res. number theory 10, 36 (2024). https://doi.org/10.1007/s40993-024-00524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-024-00524-7

Keywords

Mathematics Subject Classification

Navigation