Skip to main content
Log in

Effective estimates for traces of singular moduli

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Traces of singular moduli can be approximated by exponential sums of quadratic irrationals. Recently Andersen and Duke used theory of Maass forms to estimate generalized twisted traces with power-saving error bounds. We establish an asymptotic formula with effective error bounds for such traces. Our methods depend on an explicit bound for sums of Kloosterman sums on \(\Gamma _{0}(4)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The code generated as part of this work is available at [21], including the searching results. The dataset of Maass forms published by Seymour-Howell is available at [20].

References

  1. Apostol, T.M.: Modular functions and dirichlet series in number theory. In: Graduate Texts in Mathematics, vol. 41. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-0999-7

    Chapter  Google Scholar 

  2. Zagier, D.: Traces of singular moduli. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998) vol. 3, pp. 211–244. Int. Press, Somerville, MA (2002)

  3. Duke, W.: Modular functions and the uniform distribution of CM points. Math. Ann. 334(2), 241–252 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bruinier, J.H., Jenkins, P., Ono, K.: Hilbert class polynomials and traces of singular moduli. Math. Ann. 334(2), 373–393 (2006)

    Article  MathSciNet  Google Scholar 

  5. Andersen, N., Duke, W.: Asymptotic distribution of traces of singular moduli. Discrete Anal. 4, 1–14 (2022)

    MathSciNet  Google Scholar 

  6. Nicolas, J.-L.: On highly composite numbers. In: Ramanujan Revisited (Urbana-Champaign, IL, 1987), pp. 215–244. Academic Press, Boston, MA (1988)

  7. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1(1), 83–86 (1935)

    Article  Google Scholar 

  8. Andersen, N., Duke, W.: Modular invariants for real quadratic fields and Kloosterman sums. Algebra Number Theory 14(6), 1537–1575 (2020). https://doi.org/10.2140/ant.2020.14.1537

    Article  MathSciNet  Google Scholar 

  9. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271(2), 237–268 (1985). https://doi.org/10.1007/BF01455989

    Article  ADS  MathSciNet  Google Scholar 

  10. Duke, W., Imamoglu, O., Tóth, A.: Geometric invariants for real quadratic fields. Ann. Math. 184(3), 949–990 (2016). https://doi.org/10.4007/annals.2016.184.3.8

    Article  MathSciNet  Google Scholar 

  11. Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70(2), 219–288 (1982/83) https://doi.org/10.1007/BF01390728

  12. Proskurin, N.V.: On the general Kloosterman sums. J. Math. Sci. 129(3), 3874–3889 (2005)

    Article  MathSciNet  Google Scholar 

  13. González, O.E.: Effective estimates for the smallest parts function. J. Number Theory 241, 364–386 (2022). https://doi.org/10.1016/j.jnt.2022.03.015

    Article  MathSciNet  Google Scholar 

  14. Pribitkin, W.: A generalization of the Goldfeld–Sarnak estimate on Selberg’s Kloosterman zeta-function. Forum Math. 12(4), 449–459 (2000). https://doi.org/10.1515/form.2000.014

    Article  MathSciNet  Google Scholar 

  15. Goldfeld, D., Sarnak, P.: Sums of Kloosterman sums. Invent. Math. 71(2), 243–250 (1983). https://doi.org/10.1007/BF01389098

    Article  ADS  MathSciNet  Google Scholar 

  16. Sarnak, P.: Some Applications of Modular Forms. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511895593

    Book  Google Scholar 

  17. Sarnak, P.: Additive number theory and Maass forms. In: Number Theory (New York, 1982). Lecture Notes in Math., vol. 1052, pp. 286–309. Springer, Berlin (1984). https://doi.org/10.1007/BFb0071548

  18. The LMFDB Collaboration: The L-functions and modular forms database. https://www.lmfdb.org. Accessed 31 January 2023 (2020)

  19. Seymour-Howell, A.: Rigorous computation of Maass cusp forms of squarefree level. Res. Number Theory 3, 83 (2022). https://doi.org/10.1007/s40993-022-00393-y

    Article  MathSciNet  Google Scholar 

  20. Seymour-Howell, A.: Dataset of Maass forms of squarefree level computed via the Trace Formula. Zenodo (2022). https://doi.org/10.5281/zenodo.7105772

    Article  Google Scholar 

  21. Sun, Q.: Codes: search-Maass-eigenvalues. GitHub Repository (2023). https://github.com/qihangsun98/searching-Maass-eigenvalues

  22. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53, p. 615. American Mathematical Society, Providence (2004). https://doi.org/10.1090/coll/053

    Book  Google Scholar 

  23. Bringmann, K., Kane, B., Viazovska, M.: Theta lifts and local Maass forms. Math. Res. Lett. 20(02), 213–234 (2013)

    Article  MathSciNet  Google Scholar 

  24. Davenport, H.: Multiplicative Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 74, p. 177. Springer, New York-Berlin (1980). Revised by Hugh L. Montgomery

  25. Paris, R.B.: An inequality for the Bessel function \(J_\nu (\nu x)\). SIAM J. Math. Anal. 15(1), 203–205 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a careful reading and with helpful comments and suggestions of an earlier version of this manuscript. The authors also thank Scott Ahlgren for a lot of delightful discussions and suggestions and thank Nick Andersen for insightful comments on our result. The first author was partially supported by the Alfred P. Sloan Foundation’s MPHD Program, awarded in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihang Sun.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, O.E., Sun, Q. Effective estimates for traces of singular moduli. Res. number theory 10, 29 (2024). https://doi.org/10.1007/s40993-024-00517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-024-00517-6

Keywords

Mathematics Subject Classification

Navigation