Skip to main content
Log in

Spherical designs and modular forms of the \(D_4\) lattice

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

In this paper, we study shells of the \(D_4\) lattice with a slight generalization of spherical t-designs due to Delsarte–Goethals–Seidel, namely, the spherical design of harmonic index T (spherical T-design for short) introduced by Delsarte-Seidel. We first observe that, for any positive integer m, the 2m-shell of \(D_4\) is an antipodal spherical \(\{10,4,2\}\)-design on the three dimensional sphere. We then prove that the 2-shell, which is the \(D_4\) root system, is a tight \(\{10,4,2\}\)-design, using the linear programming method. The uniqueness of the \(D_4\) root system as an antipodal spherical \(\{10,4,2\}\)-design with 24 points is shown. We give two applications of the uniqueness: a decomposition of the shells of the \(D_4\) lattice in terms of orthogonal transformations of the \(D_4\) root system, and the uniqueness of the \(D_4\) lattice as an even integral lattice of level 2 in the four dimensional Euclidean space. We also reveal a connection between the harmonic strength of the shells of the \(D_4\) lattice and non-vanishing of the Fourier coefficients of a certain newform of level 2. Motivated by this, congruence relations for the Fourier coefficients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, K.T. upon reasonable request.

References

  1. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30, 1392–1425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Delsarte, P., Seidel, J.J.: Fisher type inequalities for Euclidean t-designs. Linear Algebra Appl. 114(115), 213–230 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Res. Repts. Suppl., No. 10 (1973)

  5. Venkov, B.: On even unimodular extremal lattice. Tr. Mat. Inst. Steklova 165, 43–48 (1984) (in Russian); Proc. Steklov Inst. Math., 165(3), 47–52 (1985)

  6. Bachoc, C., Venkov, B.: Modular forms, lattices and spherical designs. In: Reseaux euclidiens, designs spheriques et formes modulaires. In: Monogr. Enseign. Math., vol. 37, Enseignement Mathematics, Geneva, pp. 87–111 (2001)

  7. de la Harpe, P., Pache, C.: Cubature formulas, geometrical designs, reproducing kernels, and Markov operators. In: Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. In: Progress in Mathematics, vol. 248. Birkhauser, Basel, pp. 219–267 (2005)

  8. de la Harpe, P., Pache, C., Venkov, B.: Construction of spherical cubature formulas using lattices. Algebra Anal. 18(1), 162–186 (2006). Translation in St. Petersburg Math. J., 18 (1), 119–139 (2007)

  9. Pache, C.: Shells of selfdual lattices viewed as spherical designs. Int. J. Algebra Comput. 15(5–6), 1085–1127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bannai, E., Okuda, T., Tagami, M.: Spherical designs of harmonic index \(t\). J. Approx. Theory 195, 1–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Okuda, T., Yu, W.-H.: A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index \(4\). Eur. J. Comb. 53, 96–103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhu, Y., Bannai, E., Bannai, E., Kim, K.-T., Yu, W.-H.: On spherical designs of some harmonic indices. Electronic J. Comb. 24(2), \(\sharp \)P2.14 (2017)

  13. Lehmer, D.H.: The vanishing of Ramanujans function \(\tau (n)\). Duke Math. J. 14, 429–433 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  14. Billerey, N., Menares, R.: On the modularity of reducible mod \(l\) Galois representations. Math. Res. Lett. 23, 15–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dummigan, N., Fretwell, D.: Ramanujan-style congruences of local origin. J. Number Theory 143, 248–261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaba, R., Popa, A.A.: A generalization of Ramanujan’s congruence to modular forms of prime level. J. Number Theory 193, 48–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, A., Kumari, M., Moree, P., Singh, S.K.: Ramanujan-style congruences for prime level, Math. Z., 303, Article number: 19 (2023)

  18. Nikdelan, Y.: Ramanujan-type systems of nonlinear ODEs for \(\Gamma _0(2)\) and \(\Gamma _0(3)\), preprint (2111.01844)

  19. Bannai, E., Bannai, E., Tanaka, H., Zhu, Y.: Design theory from the viewpoint of algebraic combinatorics. Graphs Combin. 33, 1–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ebeling, W.: Lattices and Codes, A Course Partially Based on Lectures by Hirzenbruch, F. (Vieweg, Braunschweig), 2nd revised edn., 2002 (1994)

  21. Diamond, F., Shurman, J.: A First Course in Modular Forms. Springer, New York (2005)

    MATH  Google Scholar 

  22. Bourbaki, N.: Groups et Algebra de Lie, Chapters 4, 5, 6 Hermann, Paris (1968)

  23. Goethals, J.M., Seidel, J.J.: Cubature Formulae, Polytopes, and Spherical Designs. The Geometric Vein, pp. 203–218. Springer, Berlin (1981)

    MATH  Google Scholar 

  24. Bannai, E., Zhao, D., Zhu, L., Zhu, Y.: Half of an antipodal spherical design. Arch. Math. (Basel) 110(5), 459–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Boyvalenkov, P., Danev, D.: Uniqueness of the 120-point spherical 11-design in four dimensions. Arch. Math. (Basel) 77, 360–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boyvalenkov, P.: Computing distance distributions of spherical designs. Linear Algebra Appl. 226, 277–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bannai, E., Bannai, E.: On antipodal spherical \(t\)-design of degree \(s\) with \(t\ge 2s--3\). J. Comb. Inf. Syst. Sci. 34, 33–50 (2009)

    MATH  Google Scholar 

  28. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21, 909–924 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Musin, O.R.: The kissing number in four dimensions. Ann. Math. 168, 1–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cohn, H., Conway, J.H., Elkies, N.D., Kumar, A.: The \(D_4\) root system is not universally optimal. Exp. Math. 16, 313–320 (2007)

    Article  MATH  Google Scholar 

  31. Bannai, E., Sloane, N.J.A.: Uniqueness of certain spherical codes. Can. J. Math. 33(2), 437–449 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A K Peters Ltd, Natick (2003)

    Book  MATH  Google Scholar 

  34. Serre, J.-P.: A Course in Arithmetic. In: Graduate Texts in Mathematics, vol. 7. Springer, Berlin (1973)

    Google Scholar 

  35. Siegel, C.L.: Gesammelte Abhandlungen, I, No. 20 and III, No. 79. Springer, Berlin (1966)

  36. Böcherer, S., Nebe, G.: On theta series attached to maximal lattices and their adjoints. J. Ramanujan Math. Soc. 3, 265–284 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Eichler, M.: The basis problem for modular forms and the traces of the Hecke operators. In: Modular Functions of One Variable I. Lecture Notes in Mathematics, vol. 320. Springer (1973)

  38. Hijikata, H., Saito, H.: On the representability of modular forms by theta series. In: Number Theory, Algebraic Geometry and Commutative Algebra (in honour of Y. Akizuki) Tokyo (1973)

  39. Waldspurger, J.-L.: Engendrement par des series theta de certains espaces de formes modulaires. Inv. Math. 50, 135–168 (1979)

    Article  MATH  Google Scholar 

  40. Nozaki, H., Sawa, M.: Remarks on Hilbert identities, isometric embeddings, and invariant cubature. St. Petersburg Math. J. 25, 615–646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bannai, E., Miezaki, T.: Toy models for D. H. Lehmer’s conjecture. J. Math. Soc. Jpn. 62(3), 687–705 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Miezaki, T.: On a generalization of spherical designs. Discret. Math. 313(4), 375–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pandey, B.V.: Modular forms and ellipsoidal \(T\)-designs. Ramanujan J. 58, 1245–1257 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. The PARI Group, PARI/GP version 2.13.4, Univ. Bordeaux (2022). http://pari.math.u-bordeaux.fr/

  45. Deligne, P.: La Conjectures de Weil I. Math. l’IHES 43, 273–307 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Nos. 19K03445, 20K03736, 20K14294 and 22K03402, and the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. The authors are grateful to Prof. Eiichi Bannai, Prof. Ken Ono, Prof. Siegfried Böcheler, Prof. Jiacheng Xia and Prof. Pieter Moree for valuable discussions, comments, suggestions, and corrections. The authors also would like to extend their appreciation to the anonymous reviewers for their valuable feedback, which significantly contributed to the clarity and coherence of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tasaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirao, M., Nozaki, H. & Tasaka, K. Spherical designs and modular forms of the \(D_4\) lattice. Res. number theory 9, 77 (2023). https://doi.org/10.1007/s40993-023-00479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-023-00479-1

Keywords

Mathematics Subject Classification

Navigation