Skip to main content
Log in

Shifted powers in Lucas–Lehmer sequences

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We develop a general framework for finding all perfect powers in sequences derived via shifting non-degenerate quadratic Lucas–Lehmer binary recurrence sequences by a fixed integer. By combining this setup with bounds for linear forms in logarithms and results based upon the modularity of elliptic curves defined over totally real fields, we are able to answer a question of Bugeaud, Luca, Mignotte and the third author by explicitly finding all perfect powers of the shape \(F_k \pm 2 \) where \(F_k\) is the k-th term in the Fibonacci sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, M.A., Dahmen, S., Mignotte, M., Siksek, S.: Shifted powers in binary recurrence sequences. Math. Proc. Camb. Philos. Soc. 158, 305–329 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language, J. Symb. Comp. 24, 235–265. (See also http://magma.maths.usyd.edu.au/magma/) (1997)

  3. Bugeaud, Y., Luca, F., Mignotte, M., Siksek, S.: Fibonacci numbers at most one away from a perfect power. Elem. Math. 63(2), 65–75 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bugeaud, Y., Luca, F., Mignotte, M., Siksek, S.: Almost powers in the Lucas sequences. J. Théor. Nombres Bordeaux 20, 555–600 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math 163, 969–1018 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bugeaud, Y., Mignotte, M., Siksek, S., Stoll, M., Tengely, Sz: Integral points on hyperelliptic curves. Algebra Number Theory 2, 859–885 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cohen, H.: Advanced Topics in Computational Algebraic Number Theory, vol. 193. Springer–Verlag, Berlin (2000)

    Book  Google Scholar 

  8. David, A.: Caractère d’isogénie et crittéres d’irréductibilité, arXiv:1103.3892v2 [math.NT]

  9. Dembélé, L., Voight, J.: Explicit methods for Hilbert modular forms, In Elliptic curves, Hilbert modular forms and Galois deformations, Adv. Courses Math. CRM Barcelona, pp. 135–198. Birkhäuser/Springer, Basel (2013)

  10. Freitas, N., Le Hung, B., Siksek, S.: Elliptic curves over real quadratic fields are modular. Invent. Math. 201, 159–206 (2015)

    Article  MathSciNet  Google Scholar 

  11. Freitas, N., Siksek, S.: The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields. Compos. Math. 151, 1395–1415 (2015)

    Article  MathSciNet  Google Scholar 

  12. Freitas, N., Siksek, S.: Criteria for the irreducibility of mod \(p\) representations of Frey curves. J. Théor. Nombres Bordeaux 27, 67–76 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kraus, A., Oesterlé, J.: Sur une question de B. Mazur. Math. Ann 293, 259–275 (2002)

    Article  MathSciNet  Google Scholar 

  14. Kraus, A.: Sur l’équation \(a^{3}+b^{3} = c^{p}\). Exp. Math. 7, 1–13 (1998)

    Article  Google Scholar 

  15. Laurent, M.: Linear forms in two logarithms and interpolation determinants. II. Acta Arith. 133, 325–348 (2008)

    Article  MathSciNet  Google Scholar 

  16. Matveev, E.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math 64, 1217–1269 (2000)

    Article  MathSciNet  Google Scholar 

  17. Mignotte, M.: A kit on linear forms in three logarithms, p. 45. http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.ps

  18. Momose, F.: Isogenies of prime degree over number fields. Compos. Math. 97, 329–348 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Pethő, A.: Perfect powers in second order linear recurrences. J. Number Theory 15, 5–13 (1982)

    Article  MathSciNet  Google Scholar 

  20. Shorey, T., Stewart, C.L.: On the Diophantine equation \(ax^{2t}+bx^ty+cy^2=d\) and pure powers in recurrence sequences. Math. Scand. 52, 24–36 (1983)

    Article  MathSciNet  Google Scholar 

  21. Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  22. Smart, N.P.: The Algorithmic Resolution of Diophantine Equations. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  23. Smart, N.P., Stephens, N.M.: Integral points on elliptic curves over number fields. Math. Proc. Camb. Philos. Soc. 122, 9–16 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author's contributions

Acknowledgements

The first-named is supported by NSERC. The third-named author is supported by an EPSRC Leadership Fellowship EP/G007268/1, and EPSRC LMF: L-Functions and Modular Forms Programme Grant EP/K034383/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bennett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, M.A., Patel, V. & Siksek, S. Shifted powers in Lucas–Lehmer sequences. Res. number theory 5, 15 (2019). https://doi.org/10.1007/s40993-019-0153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-019-0153-2

Keywords

Mathematics Subject Classification

Navigation