Skip to main content
Log in

Interface fracture characterization of 3D-printed rigid/flexible dissimilar polymers

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Interface fracture in additively manufactured multi-materials is a leading cause of failure and it is critical to understand and characterize it. Here a simple methodology is presented to quantify the interfacial failure in additively manufactured acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) bimaterials. Double cantilever beam (DCB) specimens were 3D-printed where a TPU layer is sandwiched between two ABS substrates. The printed specimens were loaded under mode I until failure, and the crack initiation load was identified using a verified stiffness drop method. This method overcame the significant crack blunting issues in visual crack detection methods, caused by the TPU inelastic deformation. A finite element model was used to obtain the J-integral fracture energy values. The measured fracture energy presented the adhesion strength between ABS and TPU, as the failure was purely adhesive in nature. The effect of the specimen geometry on the ABS/TPU interface fracture energy was then analyzed. It was found that the fracture energy is independent of the precrack length, but it is strongly affected by the TPU layer thickness, which was related to enlargement of the damage zone ahead of crack tip. This methodology provides a simple route to characterize interfacial adhesion in various additively manufactured multi-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data is available upon request.

References

  1. Diegel O, Nordin A, Motte D (2019) Additive Manufacturing Technologies. Springer, Singapore, pp 19–39

    Google Scholar 

  2. Crump SS (1991) Fast, precise, safe prototypes with FDM. Solid freeform fabrication symposium, pp 115–122. https://utw10945.utweb.utexas.edu/Manuscripts/1991/1991-15-Wales.pdf

  3. Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. https://doi.org/10.1002/0470033991

  4. Ait-Mansour I, Kretzschmar N, Chekurov S et al (2020) Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Progress Addit Manuf 5:51–57. https://doi.org/10.1007/s40964-020-00124-8

    Article  Google Scholar 

  5. Harris M, Potgieter J, Archer R, Arif KM (2019) Effect of material and process specific factors on the strength of printed parts in fused filament fabrication: A review of recent developments. Materials. https://doi.org/10.3390/ma12101664

    Article  PubMed  PubMed Central  Google Scholar 

  6. Angelopoulos PM, Samouhos M, Taxiarchou M (2020) Functional fillers in composite filaments for fused filament fabrication a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.069

    Article  Google Scholar 

  7. Brenken B, Barocio E, Favaloro A et al (2018) Fused filament fabrication of fiber-reinforced polymers: A review. Addit Manuf 21:1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  CAS  Google Scholar 

  8. Lee CS, Kim SG, Kim HJ, Ahn SH (2007) Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 187–188:627–630. https://doi.org/10.1016/j.jmatprotec.2006.11.095

    Article  CAS  Google Scholar 

  9. Ameli A, Datla NV, Azari S et al (2012) Prediction of environmental degradation of closed adhesive joints using data from open-faced specimens. Compos Struct 94:779–786. https://doi.org/10.1016/j.compstruct.2011.09.017

    Article  Google Scholar 

  10. Khosravani MR, Berto F, Ayatollahi MR, Reinicke T (2020) Fracture behavior of additively manufactured components: A review. Theoret Appl Fract Mech 109:102763. https://doi.org/10.1016/j.tafmec.2020.102763

    Article  CAS  Google Scholar 

  11. Nadimpalli SPV, Spelt JK (2010) R-curve behavior of Cu-Sn3.0Ag0.5Cu solder joints: Effect of mode ratio and microstructure. Mater Sci Eng A 527:724–734. https://doi.org/10.1016/j.msea.2009.08.046

    Article  CAS  Google Scholar 

  12. Datla NV, Ameli A, Azari S et al (2012) Effects of hygrothermal aging on the fatigue behavior of two toughened epoxy adhesives. Eng Fract Mech 79:61–77. https://doi.org/10.1016/j.engfracmech.2011.10.002

    Article  Google Scholar 

  13. Hart KR, Dunn RM, Sietins JM et al (2018) Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 144:192–204. https://doi.org/10.1016/j.polymer.2018.04.024

    Article  CAS  Google Scholar 

  14. Aliheidari N, Christ J, Tripuraneni R et al (2018) Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Mater Design 156:351–361. https://doi.org/10.1016/j.matdes.2018.07.001

    Article  CAS  Google Scholar 

  15. Aliheidari N, Tripuraneni R, Ameli A, Nadimpalli S (2017) Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym Test 60:94–101. https://doi.org/10.1016/j.polymertesting.2017.03.016

    Article  CAS  Google Scholar 

  16. Hart KR, Wetzel ED (2017) Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Eng Fract Mech 177:1–13. https://doi.org/10.1016/j.engfracmech.2017.03.028

    Article  Google Scholar 

  17. Thaler D, Aliheidari N, Ameli A (2019) Mechanical, electrical, and piezoresistivity behaviors of additively manufactured acrylonitrile butadiene styrene/carbon nanotube nanocomposites. Smart Mater Struct. https://doi.org/10.1088/1361-665X/ab256e

    Article  Google Scholar 

  18. McLouth TD, Severino JV, Adams PM et al (2017) The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Addit Manuf 18:103–109. https://doi.org/10.1016/j.addma.2017.09.003

    Article  CAS  Google Scholar 

  19. Papon EA, Haque A (2019) Fracture toughness of additively manufactured carbon fiber reinforced composites. Addit Manuf 26:41–52. https://doi.org/10.1016/j.addma.2018.12.010

    Article  CAS  Google Scholar 

  20. Hart KR, Dunn RM, Wetzel ED (2020) Increased fracture toughness of additively manufactured semi-crystalline thermoplastics via thermal annealing. Polymer. https://doi.org/10.1016/j.polymer.2020.123091

    Article  Google Scholar 

  21. Vaezi M, Chianrabutra S, Mellor B, Yang S (2013) Multiple material additive manufacturing–Part 1: a review. Virtual Phys Prototyp 8:19–50. https://doi.org/10.1080/17452759.2013.778175

    Article  Google Scholar 

  22. Espalin D, Ramirez JA, Medina F, Wicker R (2014) Multi-material, multi-technology FDM: Exploring build process variations. Rapid Prototyp J 20:236–244. https://doi.org/10.1108/RPJ-12-2012-0112

    Article  Google Scholar 

  23. Bandyopadhyay A, Heer B (2018) Additive manufacturing of multi-material structures. Mater Sci Eng R: Rep 129:1–16. https://doi.org/10.1016/j.mser.2018.04.001

    Article  Google Scholar 

  24. Espalin D, Ramirez J, Medina F, Wicker R (2012) Multi-material, multi-technology FDM system. 23rd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2012 828–835

  25. Loke G, Yuan R, Rein M et al (2019) Structured multimaterial filaments for 3D printing of optoelectronics. Nat Commun. https://doi.org/10.1038/s41467-019-11986-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Christ JF, Aliheidari N, Pötschke P, Ameli A (2018) Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites. Polymers. https://doi.org/10.3390/polym11010011

    Article  PubMed  PubMed Central  Google Scholar 

  27. Christ JF, Aliheidari N, Ameli A, Pötschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Design 131:394–401. https://doi.org/10.1016/j.matdes.2017.06.011

    Article  CAS  Google Scholar 

  28. Hohimer CJ, Petrossian G, Ameli A et al (2020) 3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators. Addit Manuf 34:101281. https://doi.org/10.1016/j.addma.2020.101281

    Article  CAS  Google Scholar 

  29. Zhu F, Cheng L, Yin J et al (2016) 3D Printing of Ultratough Polyion Complex Hydrogels. ACS Appl Mater Interf 8:31304–31310. https://doi.org/10.1021/acsami.6b09881

    Article  CAS  Google Scholar 

  30. Sabantina L, Kinzel F, Ehrmann A, Finsterbusch K (2015) Combining 3D printed forms with textile structures - Mechanical and geometrical properties of multi-material systems. IOP Conf Series Mater Sci Eng. https://doi.org/10.1088/1757-899X/87/1/012005

    Article  Google Scholar 

  31. Lopez DMB, Ahmad R (2020) Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling. Polymers. https://doi.org/10.3390/polym12030651

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shih Y-C, Mohamed M, Ge J et al (2023) Application of interlaminar shear strength and finite element modeling for failure analysis of 3D printed continuous fiber-reinforced composites. Prog Addit Manuf 8:1501–1516. https://doi.org/10.1007/s40964-023-00417-8

    Article  Google Scholar 

  33. Khudiakova A, Arbeiter F, Spoerk M et al (2019) Inter-layer bonding characterisation between materials with different degrees of stiffness processed by fused filament fabrication. Addit Manuf 28:184–193. https://doi.org/10.1016/j.addma.2019.05.006

    Article  CAS  Google Scholar 

  34. Khan AS, Ali A, Hussain G, Ilyas M (2019) An experimental study on interfacial fracture toughness of 3-D printed ABS / CF-PLA composite under mode I, II, and mixed-mode loading. J Thermoplast Composit Mater. https://doi.org/10.1177/0892705719874860

    Article  Google Scholar 

  35. Rabbi MF, Chalivendra V (2021) Interfacial fracture characterization of multi-material additively manufactured polymer composites. Composit Part C: Open Access 5:100145. https://doi.org/10.1016/j.jcomc.2021.100145

    Article  CAS  Google Scholar 

  36. Gul JZ, Sajid M, Rehman MM et al (2018) 3D printing for soft robotics–a review. Sci Technol Adv Mater 19:243–262. https://doi.org/10.1080/14686996.2018.1431862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma RR, Belter JT, Dollar AM (2015) Hybrid Deposition Manufacturing: Design Strategies for Multimaterial Mechanisms Via Three- Dimensional Printing and Material Deposition. J Mech Robot 7:1–10. https://doi.org/10.1115/1.4029400

    Article  CAS  Google Scholar 

  38. Culbertson H, Schorr SB, Okamura AM (2018) Haptics: The Present and Future of Artificial Touch Sensation. Annu Rev Control, Robot, Auton Syst 1:385–409. https://doi.org/10.1146/annurev-control-060117-105043

    Article  Google Scholar 

  39. Rossa-Sierra A, Sánchez-Soto M, Illescas S, Maspoch ML (2009) Study of the interface behaviour between MABS/TPU bi-layer structures obtained through over moulding. Mater Design 30:3979–3988. https://doi.org/10.1016/j.matdes.2009.05.037

    Article  CAS  Google Scholar 

  40. Yin J, Lu C, Fu J et al (2018) Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater Design 150:104–112. https://doi.org/10.1016/j.matdes.2018.04.029

    Article  CAS  Google Scholar 

  41. Harris CG, Jursik NJS, Rochefort WE, Walker TW (2019) Additive Manufacturing With Soft TPU – Adhesion Strength in Multimaterial Flexible Joints. Front Mech Eng 5:1–6. https://doi.org/10.3389/fmech.2019.00037

    Article  Google Scholar 

  42. El Hassan A, Ahmed W, Zaneldin E (2022) Investigating the Impact of Inclusions on the Behavior of 3D-Printed Composite Sandwich Beams. Buildings 12:1448. https://doi.org/10.3390/buildings12091448

    Article  Google Scholar 

  43. Ahmed W, Ahmed S, Alnajjar F, Zaneldin E (2021) Mechanical performance of three-dimensional printed sandwich composite with a high-flexible core. Proc Inst Mech Eng, Part L: J Mater: Design Appl 235:1382–1400. https://doi.org/10.1177/14644207211011729

    Article  Google Scholar 

  44. Yavas D, Liu Q, Zhang Z, Wu D (2022) Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Mater Design 217:110613. https://doi.org/10.1016/j.matdes.2022.110613

    Article  CAS  Google Scholar 

  45. ASTM D5528-13 (2013) Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM International

  46. Duan K, Hu X, Mai Y-W (2004) Substrate constraint and adhesive thickness effects on fracture toughness of adhesive joints. J Adhes Sci Technol 18:39–53. https://doi.org/10.1163/156856104322746992

    Article  CAS  Google Scholar 

  47. Ineos Styrolution ABS Terluran GP-35 Technical Data Sheet

  48. Peterson AM (2019) Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective. Addit Manuf 27:363–371. https://doi.org/10.1016/j.addma.2019.03.030

    Article  CAS  Google Scholar 

  49. BASF Elastollan ® 1185AW TPU Technical Data Sheet. https://www.ulprospector.com/plastics/en/datasheet/239310/elastollan-1185aw

  50. Hohimer C, Aliheidari N, Mo C, Ameli A (2017) Mechanical behavior of 3D printed multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Proceedings of the ASME 2017 conference on smart materials, adaptive structures and intelligent systems, SMASIS2017-3808. https://doi.org/10.1115/SMASIS2017-3808

  51. D’Amico A, Peterson AM (2018) An adaptable FEA simulation of material extrusion additive manufacturing heat transfer in 3D. Addit Manuf 21:422–430. https://doi.org/10.1016/j.addma.2018.02.021

    Article  Google Scholar 

  52. Pourali M, Peterson AM (2019) Thermal Modeling of Material Extrusion Additive Manufacturing. ACS Symp Series 1315:115–130. https://doi.org/10.1021/bk-2019-1315.ch007

    Article  Google Scholar 

  53. Kalia K, Ameli A (2020) Interfacial bond strength of various rigid/soft multi-materials printed via fused filament fabrication process. In: ASME 2020 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers, Virtual, Online, p V001T01A010. https://doi.org/10.1115/SMASIS2020-2298

  54. Coasey K, Hart KR, Wetzel E et al (2020) Nonisothermal welding in fused filament fabrication. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101140

    Article  Google Scholar 

  55. ASTM International (2013) (ASTM D 5045)-Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. ASTM Book Stand 99:1–9. https://doi.org/10.1520/D5045-14.priate

    Article  Google Scholar 

  56. Newman JC, James MA, Zerbst U (2003) A review of the CTOA/CTOD fracture criterion. Eng Fract Mech 70:371–385. https://doi.org/10.1016/S0013-7944(02)00125-X

    Article  Google Scholar 

  57. Newman J, James MA (2001) A review of the CTOA/CTOD fracture criterion-why it works! Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2, pp 1042–1051. AIAA-2001-1324

  58. Raju IS (1987) Simple formulas for strain energy release rates with higher order and singular finite elements. Eng Fract Mech 28:251–274 (Report/Patent Number NAS 1.26:178186 (NASA-CR-178186))

    Article  Google Scholar 

  59. Qi HJ, Boyce MC (2005) Stress–strain behavior of thermoplastic polyurethanes. Mech Mater 37:817–839. https://doi.org/10.1016/j.mechmat.2004.08.001

    Article  Google Scholar 

  60. Anderson TL (2017) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press. ISBN 13: 978-0849316562

    Book  Google Scholar 

  61. Rice JR (1988) Elastic Fracture Mechanics Concepts for Interfacial Cracks. J Appl Mech 55:98–103. https://doi.org/10.1115/1.3173668

    Article  Google Scholar 

  62. Swadener JG, Liechti KM, Lozanne ALD (1999) The intrinsic toughness and adhesion mechanisms of a glass/epoxy interface. J Mech Phys Solids 47:223–258. https://doi.org/10.1016/S0022-5096(98)00084-2

    Article  ADS  CAS  Google Scholar 

  63. Rice JR (1964) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech, Trans ASME 35:379–388. https://doi.org/10.1115/1.3601206

    Article  Google Scholar 

  64. Yang X, Fu M, Wang X, Liu X (2011) Nonlinear finite element analysis of crack growth at the interface of rubber-like bimaterials. Sci China Phys Mech Astron 54:1866. https://doi.org/10.1007/s11433-011-4444-4

    Article  ADS  Google Scholar 

  65. Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Design 90:453–458. https://doi.org/10.1016/j.matdes.2015.11.009

    Article  Google Scholar 

  66. Rodríguez JF, Thomas JP, Renaud JE (2003) Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling. Rapid Prototyp J 9:219–230. https://doi.org/10.1108/13552540310489604

    Article  Google Scholar 

  67. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412. https://doi.org/10.1016/0022-5096(93)90013-6

    Article  ADS  CAS  Google Scholar 

  68. Smith M (2020) ABAQUS/Standard User’s Manual, Version 2020. Dassault Systemes Simulia Corp

  69. Yavas D, Zhang Z, Liu Q, Wu D (2021) Fracture behavior of 3D printed carbon fiber-reinforced polymer composites. Composit Sci Technol 208:108741. https://doi.org/10.1016/j.compscitech.2021.108741

    Article  CAS  Google Scholar 

  70. Song Y, Li Y, Song W et al (2017) Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Design 123:154–164. https://doi.org/10.1016/j.matdes.2017.03.051

    Article  CAS  Google Scholar 

  71. Ameli A, Papini M, Schroeder JA, Spelt JK (2010) Fracture R-curve characterization of toughened epoxy adhesives. Eng Fract Mech 77:521–534. https://doi.org/10.1016/j.engfracmech.2009.10.009

    Article  Google Scholar 

  72. Shokrieh MM, Salamat-talab M, Heidari-Rarani M (2014) Effect of initial crack length on the measured bridging law of unidirectional E-glass/epoxy double cantilever beam specimens. Mater Design 55:605–611. https://doi.org/10.1016/j.matdes.2013.09.064

    Article  CAS  Google Scholar 

  73. Shokrieh MM, Heidari-Rarani M, Ayatollahi MR (2012) Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach. Polym Test 31:68–75. https://doi.org/10.1016/j.polymertesting.2011.08.012

    Article  CAS  Google Scholar 

  74. Han X, Jin Y, da Silva LFM et al (2020) On the effect of adhesive thickness on mode I fracture energy - an experimental and modelling study using a trapezoidal cohesive zone model. J Adhes 96:490–514. https://doi.org/10.1080/00218464.2019.1601087

    Article  CAS  Google Scholar 

  75. Ji G, Ouyang Z, Li G et al (2010) Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints. Int J Solids Struct 47:2445–2458. https://doi.org/10.1016/j.ijsolstr.2010.05.006

    Article  Google Scholar 

  76. Banea MD, da Silva LFM, Campilho RDSG (2015) The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. J Adhes 91:331–346. https://doi.org/10.1080/00218464.2014.903802

    Article  CAS  Google Scholar 

  77. Azari S, Papini M, Spelt JK (2011) Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints – Part I: Experiments. Eng Fract Mech 78:153–162. https://doi.org/10.1016/j.engfracmech.2010.06.025

    Article  Google Scholar 

  78. Azari S, Papini M, Spelt JK (2011) Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints–Part II: Analysis and finite element modeling. Eng Fract Mech 78:138–152. https://doi.org/10.1016/j.engfracmech.2010.07.006

    Article  Google Scholar 

  79. De León AS, Domínguez-Calvo A, Molina SI (2019) Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Mater Design 182:108044. https://doi.org/10.1016/j.matdes.2019.108044

    Article  CAS  Google Scholar 

  80. Zitzumbo R, Avalos F, Alonso S (2016) Nanostructural complex in ABS/TPU immiscible mixtures. Polym Polym Composit 24:205–212. https://doi.org/10.1177/096739111602400305

    Article  CAS  Google Scholar 

  81. De R, Bruno JC, Silva MTMB, Nunes RCR (1993) An etching technique for morphological investigation of TPU/ABS blends by SEM. Polym Test 12:393–400. https://doi.org/10.1016/0142-9418(93)90011-D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siva P. V. Nadimpalli or Amir Ameli.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 862 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhare, A.S., Kalia, K., Nadimpalli, S.P.V. et al. Interface fracture characterization of 3D-printed rigid/flexible dissimilar polymers. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00575-3

Keywords

Navigation