Skip to main content
Log in

3D morphological analysis of Fe-based metallic glass surfaces via laser powder bed fusion using a digital microscope

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Surface microscopic characterization of additive manufacturing samples is necessary because of unavoidable defects in the as-printed components. However, the samples are inevitably damaged during characterization when using current methods. Herein, we propose a measurement method using a digital microscope to obtain three-dimensional (3D) morphology information related to metallic glass surfaces without damaging the samples. This study investigated the effects of processing parameters on the 3D surface morphologies of the metallic glass produced by laser powder bed fusion. The surface features of a single track, a single layer and bulk parts could be distinctly identified without damaging the samples. The results showed that the melt pool width did not increase linearly with increasing energy density, but rather had a certain upper limit. However, the height of the melt pool was strongly negatively correlated with the scanning speed. A digital microscope can allow the analysis of the macro- and micro-defects of the samples in situ. Moreover, this technique can be applied to other additive manufacturing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Velu R, Raspall F, Singamneni S (2019) Chap. 8–3D printing technologies and composite materials for structural applications, in: G. Koronis, A. Silva (Eds.), Green Composites for Automotive Applications, Woodhead Publishing, : pp. 171–196. https://doi.org/10.1016/B978-0-08-102177-4.00008-2

  2. Velu R, kumar AV, Balan ASS, Mazumder J (2021) Chap. 14 - Laser aided metal additive manufacturing and postprocessing: a comprehensive review, in: J. Pou, A. Riveiro, J.P. Davim (Eds.), Additive Manufacturing, Elsevier, : pp. 427–456. https://doi.org/10.1016/B978-0-12-818411-0.00023-9

  3. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  4. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  5. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA (2017) Pollock, 3D printing of high-strength aluminium alloys. Nature 549:365–369. https://doi.org/10.1038/nature23894

    Article  Google Scholar 

  6. Yadroitsev I, Yadroitsava I, Du Plessis A 2 - Basics of laser powder bed fusion, in: I. Yadroitsev, I. Yadroitsava, A. du Plessis, E. MacDonald (Eds.), Fundamentals of Laser Powder Bed Fusion of Metals, Elsevier, 2021: pp. 15–38. https://doi.org/10.1016/B978-0-12-824090-8.00024-X

  7. Zhang C, Ouyang D, Pauly S, Liu L (2021) 3D printing of bulk metallic glasses. Mater Sci Engineering: R: Rep 145:100625. https://doi.org/10.1016/j.mser.2021.100625

    Article  Google Scholar 

  8. Li R, Liu J, Shi Y, Du M (2010) Zhan Xie, 316L Stainless Steel with Gradient Porosity fabricated by selective laser melting. J Mater Eng Perform 19:666–671. https://doi.org/10.1007/s11665-009-9535-2

    Article  Google Scholar 

  9. Di Ouyang W, Xing N, Li Y, Li L, Liu (2018) Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting. Additive Manuf 23:246–252. https://doi.org/10.1016/j.addma.2018.08.020

    Article  Google Scholar 

  10. Cang Zhao ND, Parab X, Li K, Fezzaa W, Tan AD, Rollett (2020) Tao Sun, critical instability at moving keyhole tip generates porosity in laser melting. Science 370:1080–1086. https://doi.org/10.1126/science.abd1587

    Article  Google Scholar 

  11. Wits WW, Carmignato S, Zanini F, Vaneker THJ (2016) Porosity testing methods for the quality assessment of selective laser melted parts. CIRP Ann 65:201–204. https://doi.org/10.1016/j.cirp.2016.04.054

    Article  Google Scholar 

  12. Cunningham R, Narra SP, Montgomery C, Beuth J, Rollett AD (2017) Synchrotron-Based X-ray Microtomography characterization of the Effect of Processing variables on porosity formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V, JOM. 69:479–484. https://doi.org/10.1007/s11837-016-2234-1

  13. Andreeva N, Tomkovich M, Naberezhnov A, Nacke B, Filimonov A, Alekseeva O, Vanina P, Nizhankovskii V (2017) SEM and AFM Studies of Two-Phase Magnetic Alkali Borosilicate Glasses, The Scientific World Journal. 2017 1–9. https://doi.org/10.1155/2017/9078152

  14. Du Plessis A, Yadroitsava I, Yadroitsev I (2020) Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights. Mater Design 187:108385. https://doi.org/10.1016/j.matdes.2019.108385

    Article  Google Scholar 

  15. Whitehead SA, Shearer AC, Watts DC, Wilson NHF (1999) Comparison of two stylus methods for measuring surface texture. Dent Mater 15:79–86. https://doi.org/10.1016/S0109-5641(99)00017-2

    Article  Google Scholar 

  16. Ghodrati S, Kandi SG, Mohseni M (2018) Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces. J Opt Soc Am a 35:998. https://doi.org/10.1364/JOSAA.35.000998

    Article  Google Scholar 

  17. Van der Jeught S, Dirckx JJJ (2016) Real-time structured light profilometry: a review. Opt Lasers Eng 87:18–31. https://doi.org/10.1016/j.optlaseng.2016.01.011

    Article  Google Scholar 

  18. Custance O, Perez R, Morita S (2009) Atomic force microscopy as a tool for atom manipulation. Nat Nanotech 4:803–810. https://doi.org/10.1038/nnano.2009.347

    Article  Google Scholar 

  19. Alunda BO, Lee YJ (2020) Review: cantilever-based sensors for high speed Atomic Force Microscopy. Sensors 20:4784. https://doi.org/10.3390/s20174784

    Article  Google Scholar 

  20. Allison DP, Hinterdorfer P, Han W (2002) Biomolecular force measurements and the atomic force microscope. Curr Opin Biotechnol 13:47–51. https://doi.org/10.1016/S0958-1669(02)00283-5

    Article  Google Scholar 

  21. Brown BP, Picco L, Miles MJ, Faul CFJ (2013) Opportunities in High-Speed Atomic Force Microscopy. Small 9:3201–3211. https://doi.org/10.1002/smll.201203223

    Article  Google Scholar 

  22. Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20:448–458. https://doi.org/10.1002/jmr.843

    Article  Google Scholar 

  23. Stašić J, Božić D (2018) Densification behavior of 316L-NiB stainless steel powder and surface morphology during selective laser melting process using pulsed nd:YAG laser. Rapid Prototyp J 25:47–54. https://doi.org/10.1108/RPJ-07-2017-0136

    Article  Google Scholar 

  24. Shange M, Yadroitsava I, Pityana S, Yadroitsev I, Bester D (2019) Surface morphology characterisation for parts produced by the high speed selective laser melting. IOP Conf Ser : Mater Sci Eng 655:012045. https://doi.org/10.1088/1757-899X/655/1/012045

    Article  Google Scholar 

  25. Saprykin AA, Saprykina NA, Saprykin AA (2018) Analysis and prediction of copper surface roughness obtained by selective laser melting. IOP Conf Ser : Mater Sci Eng 441:012044. https://doi.org/10.1088/1757-899X/441/1/012044

    Article  Google Scholar 

  26. Stašić J, Božić D (2016) The effect of NiB additive on surface morphology and microstructure of 316L stainless steel single tracks and layers obtained by SLM, surface and Coatings Technology. 307:407–417. https://doi.org/10.1016/j.surfcoat.2016.09.019

  27. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Engineering: R: Rep 44:45–89. https://doi.org/10.1016/j.mser.2004.03.001

    Article  Google Scholar 

  28. Li N, Xu X, Zheng Z, Liu L (2014) Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading. Acta Mater 65:400–411. https://doi.org/10.1016/j.actamat.2013.11.009

    Article  Google Scholar 

  29. Schuh C, Hufnagel T, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109. https://doi.org/10.1016/j.actamat.2007.01.052

    Article  Google Scholar 

  30. Sun BA, Wang WH (2015) The fracture of bulk metallic glasses. Prog Mater Sci 74:211–307. https://doi.org/10.1016/j.pmatsci.2015.05.002

    Article  Google Scholar 

  31. Li N, Chen W, Liu L (2016) Thermoplastic micro-forming of Bulk Metallic Glasses: a review, JOM. 68:1246–1261. https://doi.org/10.1007/s11837-016-1844-y

  32. Wang W, Zhang C, Xu P, Yasir M, Liu L (2015) Enhancement of oxidation and wear resistance of Fe-based amorphous coatings by surface modification of feedstock powders. Mater Design 73:35–41. https://doi.org/10.1016/j.matdes.2015.02.015

    Article  Google Scholar 

  33. Guo W, Zhang J, Wu Y, Hong S, Qin Y (2015) Fabrication and characterization of Fe-based amorphous coatings prepared by high-velocity arc spraying. Mater Design 78:118–124. https://doi.org/10.1016/j.matdes.2015.04.027

    Article  Google Scholar 

  34. Suryanarayana C, Inoue A (2013) Iron-based bulk metallic glasses. Int Mater Rev 58:131–166. https://doi.org/10.1179/1743280412Y.0000000007

    Article  Google Scholar 

  35. Zou YM, Wu YS, Li KF, Tan CL, Qiu ZG, Zeng DC (2020) Selective laser melting of crack-free Fe-based bulk metallic glass via chessboard scanning strategy. Mater Lett 272. https://doi.org/10.1016/j.matlet.2020.127824

  36. Simchi A, Pohl H (2003) Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Engineering: A 359:119–128. https://doi.org/10.1016/S0921-5093(03)00341-1

    Article  Google Scholar 

  37. Xie F, Chen Q, Gao J, Li Y (2019) Laser 3D Printing of Fe-Based bulk metallic glass: Microstructure Evolution and Crack Propagation. J Mater Eng Perform 28:3478–3486. https://doi.org/10.1007/s11665-019-04103-1

    Article  Google Scholar 

  38. Masroor S (2022) Chap. 4 - Basics of metal oxides: properties and applications, in: C. Verma, J. Aslam, C.M. Hussain (Eds.), Inorganic Anticorrosive Materials, Elsevier, : pp. 85–94. https://doi.org/10.1016/B978-0-323-90410-0.00005-2

  39. Li XP, Roberts M, Liu YJ, Kang CW, Huang H, Sercombe TB (2015) Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al–Ni–Y–Co–La metallic glass, materials & design (1980–2015). 65:1–6. https://doi.org/10.1016/j.matdes.2014.08.065

  40. Qi Jiang P, Zhang J, Tan Z, Yu Y, Tian S, Ma D, Wu (2022) Influence of the microstructure on mechanical properties of SLM additive manufacturing Fe-based bulk metallic glasses. J Alloys Compd 894. https://doi.org/10.1016/j.jallcom.2021.162525

  41. Bi J, Lei Z, Chen Y, Chen X, Qin X, Tian Z (2019) Effect of process parameters on formability and surface quality of selective laser melted Al-Zn-Sc-Zr alloy from single track to block specimen. Opt Laser Technol 118:132–139. https://doi.org/10.1016/j.optlastec.2019.05.008

    Article  Google Scholar 

  42. Mugwagwa L, Dimitrov D, Matope S, Yadroitsev I (2018) Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf 21:92–99. https://doi.org/10.1016/j.promfg.2018.02.099

    Article  Google Scholar 

  43. Chen D, Wang P, Pan R, Zha C, Fan J, Kong S, Li N, Li J, Zeng Z (2021) Research on in situ monitoring of selective laser melting: a state of the art review. Int J Adv Manuf Technol 113:3121–3138. https://doi.org/10.1007/s00170-020-06432-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiwei Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zheng, A., Liu, Q. et al. 3D morphological analysis of Fe-based metallic glass surfaces via laser powder bed fusion using a digital microscope. Prog Addit Manuf (2023). https://doi.org/10.1007/s40964-023-00511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-023-00511-x

Keywords

Navigation