Skip to main content
Log in

Effect of particle shape on rheology and printability of highly filled reactive inks for direct ink writing

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Highly filled inks including a reactive titanium–boron composite powder (with Ti·2B composition), a polymeric binder, and a solvent mixture combining the main solvent with a plasticizer and surfactant, are prepared for material extrusion-based printing. To determine the effect of particle shape and loading on rheology and printability of the inks, both spherical and irregularly shaped powders with the same composition and close particle sizes are manufactured by high-energy milling and used to formulate 80%, 90%, and 95% (wt.) inks. All ink formulations show shear thinning and shear recovery behavior. The degree of shear thinning decreases with increased particle loading, and inks with spherical particles show a higher degree of shear thinning. Shear recovery is instantaneous for inks with spherical particles, whereas it takes over 10 min for inks with irregular particles to fully recover. All inks behave elastic, solid-like at low strain and become viscous, liquid-like at a critical strain, or yield stress (\({\sigma }_{y}\)). For inks with irregular particles, critical yield stress is significantly higher (\({\sigma }_{y}\approx\) 1250 Pa for 80%, 1600 Pa for 90%, and 2800 Pa for 95%) as compared to spherical particles (\({\sigma }_{y}\approx\) 400 Pa for 80%, ~ 600 Pa for 90%, and 1700 Pa for 95%). Printability studies show that inks with spherical particles produce finer struts with a smaller width, and lower porosity. For 80%, 90%, and 95% inks with irregular particles, the smallest printable strut widths were approximately 250, 400, and 650 μm, whereas for spherical particles they were 170, 300, and 360 μm, respectively. We demonstrated printing of various 2D and 3D structures including heterogeneous structures printed using multiple ink formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings are available on request from the corresponding author.

References

  1. Dreizin EL, Schoenitz M (2017) Mechanochemically prepared reactive and energetic materials: a review. J Mater Sci 52(20):11789–11809

    Article  Google Scholar 

  2. Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35(2):141–167

    Article  Google Scholar 

  3. Bird DT, Ravindra NM, Review A (2021) Advances and modernization in U.S army gun propellants. JOM 73(4):1144–1164

    Article  Google Scholar 

  4. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Func Mater 16(17):2193–2204

    Article  Google Scholar 

  5. Muravyev NV, Monogarov KA, Schaller U, Fomenkov IV, Pivkina AN (2019) Progress in additive manufacturing of energetic materials: creating the reactive microstructures with high potential of applications. Propellants Explos Pyrotech 44(8):941–969

    Article  Google Scholar 

  6. Wainwright ER, Sullivan KT, Grapes MD (2020) Designer direct ink write 3D-printed thermites with tunable energy release rates. Adv Eng Mater 22(6):1901196

    Article  Google Scholar 

  7. Mao Y, Zhong L, Zhou X, Zheng D, Zhang X, Duan T, Nie F, Gao B, Wang D (2019) 3D printing of micro-architected Al/CuO-based nanothermite for enhanced combustion performance. Adv Eng Mater 21(12):1900825

    Article  Google Scholar 

  8. Elder B, Neupane R, Tokita E, Ghosh U, Hales S, Kong YL (2020) Nanomaterial patterning in 3D printing. Adv Mater 32(17):1907142

    Article  Google Scholar 

  9. Taylor SL, Shah RN, Dunand DC (2018) Ni-Mn-Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Mater 143:20–29

    Article  Google Scholar 

  10. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, Shindo PW, Medina F, Wicker RB (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Mark Res 1(1):42–54

    Google Scholar 

  11. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14

    Article  Google Scholar 

  12. Frazier W (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928

    Article  Google Scholar 

  13. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Article  Google Scholar 

  14. Farahani RD, Chizari K, Therriault D (2014) Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 6(18):10470–10485

    Article  Google Scholar 

  15. Kachit M, Kopp A, Adrien J, Maire E, Boulnat X (2022) Direct-ink writing and compression behavior by in situ micro-tomography of architectured 316L scaffolds with a two-scale porosity. J Mark Res 20:1341–1351

    Google Scholar 

  16. Rocha VG, Saiz E, Tirichenko IS, García-Tuñón E (2020) Direct ink writing advances in multi-material structures for a sustainable future. J Mater Chem A 8(31):15646–15657

    Article  Google Scholar 

  17. Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM (2022) Direct ink writing: a 3D printing technology for diverse materials. Adv Mater 34(28):2108855

    Article  Google Scholar 

  18. Arlington SQ, Barron SC, DeLisio JB, Rodriguez JC, Vummidi Lakshman S, Weihs TP, Fritz GM (2021) Multifunctional reactive nanocomposites via direct ink writing. Adv Mater Technol 6(5):2001115

    Article  Google Scholar 

  19. Straathof MH, van Driel CA, van Lingen JNJ, Ingenhut BLJ, ten Cate AT, Maalderink HH (2020) Development of propellant compositions for vat photopolymerization additive manufacturing. Propellants Explos Pyrotech 45(1):36–52

    Article  Google Scholar 

  20. Murray AK, Isik T, Ortalan V, Gunduz IE, Son SF, Chiu GTC, Rhoads JF (2017) Two-component additive manufacturing of nanothermite structures via reactive inkjet printing. J Appl Phys 122(18):184901

    Article  Google Scholar 

  21. Murray AK, Novotny WA, Fleck TJ, Gunduz IE, Son SF, Chiu GTC, Rhoads JF (2018) Selectively-deposited energetic materials: a feasibility study of the piezoelectric inkjet printing of nanothermites. Addit Manuf 22:69–74

    Google Scholar 

  22. Li L, Lin Q, Tang M, Duncan AJE, Ke C (2019) Advanced polymer designs for direct-ink-write 3D printing. Chem A Eur J 25(46):10768–10781

    Article  Google Scholar 

  23. Jakus AE, Taylor SL, Geisendorfer NR, Dunand DC, Shah RN (2015) Metallic architectures from 3D-printed powder-based liquid inks. Adv Func Mater 25(45):6985–6995

    Article  Google Scholar 

  24. Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA (2010) Printed origami structures. Adv Mater 22(20):2251–2254

    Article  Google Scholar 

  25. Biasetto L, Elsayed H (2022) Direct ink writing of AISI 316L dense parts and porous lattices. Adv Eng Mater 24(11):2101729

    Article  Google Scholar 

  26. McClain MS, Gunduz IE, Son SF (2019) Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proc Combust Inst 37(3):3135–3142

    Article  Google Scholar 

  27. Walters IT, Groven LJ (2019) Environmentally friendly boron-based pyrotechnic delays: an additive manufacturing approach. ACS Sustain Chem Eng 7(4):4360–4367

    Article  Google Scholar 

  28. Wang H, Shen J, Kline DJ, Eckman N, Agrawal NR, Wu T, Wang P, Zachariah MR (2019) Direct writing of a 90 wt% particle loading nanothermite. Adv Mater 31(23):e1806575

    Article  Google Scholar 

  29. Ruz-Nuglo FD, Groven LJ (2018) 3-D printing and development of fluoropolymer based reactive inks. Adv Eng Mater 20(2):1700390

    Article  Google Scholar 

  30. Tagliaferri S, Panagiotopoulos A, Mattevi C (2021) Direct ink writing of energy materials. Mater Adv 2(2):540–563

    Article  Google Scholar 

  31. Kong S, Liao D-j, Jia Y-m, An C-w, Li C-y, Ye B-y, Wu B-d, Wang J-y, Guo H, Hong Z-w (2022) Performances and direct writing of CL-20 based ultraviolet curing explosive ink. Defence Technol 18(1):140–147

    Article  Google Scholar 

  32. Muthiah R, Krishnamurthy VN, Gupta BR (1992) Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci 44(11):2043–2052

    Article  Google Scholar 

  33. Chong JS, Christiansen EB, Baer AD (1971) Rheology of concentrated suspensions. J Appl Polym Sci 15(8):2007–2021

    Article  Google Scholar 

  34. Rueda MM, Auscher M-C, Fulchiron R, Périé T, Martin G, Sonntag P, Cassagnau P (2017) Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci 66:22–53

    Article  Google Scholar 

  35. Soltani F, Yilmazer Ü (1998) Slip velocity and slip layer thickness in flow of concentrated suspensions. J Appl Polym Sci 70(3):515–522

    Article  Google Scholar 

  36. Woods H, Boddorff A, Ewaldz E, Adams Z, Ketcham M, Jang DJ, Sinner E, Thadhani N, Brettmann B (2020) Rheological considerations for binder development in direct ink writing of energetic materials. Propellants Explos Pyrotech 45(1):26–35

    Article  Google Scholar 

  37. Gunduz IE, McClain MS, Cattani P, Chiu GTC, Rhoads JF, Son SF (2018) 3D printing of extremely viscous materials using ultrasonic vibrations. Addit Manuf 22:98–103

    Google Scholar 

  38. Kumar VC, Hutchings IM (2004) Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol Int 37(10):833–840

    Article  Google Scholar 

  39. Pohlman R, Lehfeldt E (1966) Influence of ultrasonic vibration on metallic friction. Ultrasonics 4(4):178–185

    Article  Google Scholar 

  40. McClain MS, Afriat A, Rhoads JF, Gunduz IE, Son SF (2020) Development and characterization of a photopolymeric binder for additively manufactured composite solid propellant using vibration assisted printing. Propellants Explos Pyrotech 45(6):853–863

    Article  Google Scholar 

  41. Corker A, Ng HCH, Poole RJ, García-Tuñón E (2019) 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials. Soft Matter 15(6):1444–1456

    Article  Google Scholar 

  42. Brown RL, Hawksley PGW (1945) Packing of regular (Spherical) and irregular particles. Nature 156(3962):421–422

    Article  Google Scholar 

  43. Ancey C, Jorrot H (2001) Yield stress for particle suspensions within a clay dispersion. J Rheol 45(2):297–319

    Article  Google Scholar 

  44. Guvendiren M, Soshinski AA, Gambogi RJ, Yang S (2012) Calcium carbonate composite hydrogel films: particle packing and optical properties. Polym Eng Sci 52(6):1317–1324

    Article  Google Scholar 

  45. Rossi C, Estève A, Vashishta P (2010) Nanoscale energetic materials. J Phys Chem Solids 71:57

    Article  Google Scholar 

  46. Pantoya ML, Granier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech 30(1):53–62

    Article  Google Scholar 

  47. Wang H, Jacob RJ, DeLisio JB, Zachariah MR (2017) Assembly and encapsulation of aluminum NP’s within AP/NC matrix and their reactive properties. Combust Flame 180:175–183

    Article  Google Scholar 

  48. Chang C, Powell RL (1994) Effect of particle size distributions on the rheology of concentrated bimodal suspensions. J Rheol 38(1):85–98

    Article  Google Scholar 

  49. Greenwood R, Luckham PF, Gregory T (1997) The effect of diameter ratio and volume ratio on the viscosity of bimodal suspensions of polymer latices. J Colloid Interface Sci 191(1):11–21

    Article  Google Scholar 

  50. Campbell I, Marnot A, Ketcham M, Travis C, Brettmann B (2021) Direct ink write 3D printing of high solids loading bimodal distributions of particles. AIChE J 67(12):e17412

    Article  Google Scholar 

  51. Khecho A, Ghaffari SA, EftekhariYekta B (2022) The influence of particle size distribution on rheological properties of fused silica pastes for direct ink writing. Int J Appl Ceram Technol 19(5):2472–2479

    Google Scholar 

  52. Shen A, Peng X, Bailey CP, Dardona S, Ma AWK (2019) 3D printing of polymer-bonded magnets from highly concentrated, plate-like particle suspensions. Mater Des 183:108133

    Article  Google Scholar 

  53. Shih WY, Shih W-H, Aksay IA (1999) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82(3):616–624

    Article  Google Scholar 

  54. M’Barki A, Bocquet L, Stevenson A (2017) Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci Rep 7(1):6017

    Article  Google Scholar 

  55. Hastings D, Rodriguez N, McCann H, Schoenitz M, Dreizin EL (2022) Titanium-boron reactive composite powders with variable morphology prepared by arrested reactive milling. Fuel 310:122313

    Article  Google Scholar 

  56. Trunov MA, Hoffmann VK, Schoenitz M, Dreizin EL (2008) Combustion of boron-titanium nanocomposite powders in different environments. J Propul Power 24(2):184–191

    Article  Google Scholar 

  57. Mursalat M, Schoenitz M, Dreizin EL, Neveu A, Francqui F (2021) Spherical boron powders prepared by mechanical milling in immiscible liquids. Powder Technol 388:41–50

    Article  Google Scholar 

  58. Mursalat M, Hastings DL, Schoenitz M, Dreizin EL (2020) Microspheres with diverse material compositions can be prepared by mechanical milling. Adv Eng Mater 22(3):1901204

    Article  Google Scholar 

  59. Holland FA, Bragg R (1995) 3 - Flow of incompressible non-Newtonian fluids in pipes. In: Holland FA, Bragg R (eds) Fluid flow for chemical engineers (Second Edition). Butterworth-Heinemann, Oxford, pp 96–139

    Chapter  Google Scholar 

  60. Kate KH, Enneti RK, Park S-J, German RM, Atre SV (2014) Predicting powder-polymer mixture properties for PIM design. Crit Rev Solid State Mater Sci 39(3):197–214

    Article  Google Scholar 

  61. Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc A Math Phys Eng Sci 466(2116):1201–1228

    Google Scholar 

  62. Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437

    Article  Google Scholar 

  63. Liaw C-Y, Pereyra J, Abaci A, Ji S, Guvendiren M (2022) 4D Printing of surface morphing hydrogels. Adv Mater Technolog 7:2101118

    Article  Google Scholar 

  64. Sarker M, Chen XB (2017) Modeling the flow behavior and flow rate of medium viscosity alginate for scaffold fabrication with a three-dimensional bioplotter. J Manuf Sci Eng 139(8):081002

    Article  Google Scholar 

  65. Kenel C, Casati NPM, Dunand DC (2019) 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices. Nat Commun 10(1):904

    Article  Google Scholar 

  66. Robinson SS, O’Brien KW, Zhao H, Peele BN, Larson CM, Mac Murray BC, Van Meerbeek IM, Dunham SN, Shepherd RF (2015) Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mech Lett 5:47–53

    Article  Google Scholar 

  67. Tian K, Bae J, Bakarich SE, Yang C, Gately RD, Spinks GM, Suo Z, Vlassak JJ, M. in het Panhuis (2017) 3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv Mater 29(10):1604827

    Article  Google Scholar 

  68. Kenel C, Geisendorfer NR, Shah RN, Dunand DC (2021) Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders. Addit Manuf 37:101637

    Google Scholar 

  69. Jiang T, Munguia-Lopez JG, Flores-Torres S, Kort-Mascort J, Kinsella JM (2019) Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication. Appl Phys Rev 6(1):011310

    Article  Google Scholar 

  70. Mewis J, Wagner NJ (2009) Thixotropy. Adv Coll Interface Sci 147–148:214–227

    Article  Google Scholar 

  71. Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50(6):975–994

    Article  Google Scholar 

  72. Lewicki JP, Rodriguez JN, Zhu C, Worsley MA, Wu AS, Kanarska Y, Horn JD, Duoss EB, Ortega JM, Elmer W, Hensleigh R, Fellini RA, King MJ (2017) 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci Rep 7(1):43401

    Article  Google Scholar 

  73. Wright WJ, Koerner H, Rapking D, Abbott A, Celik E (2022) Rapid fiber alignment quantification in direct write printing of short fiber reinforced composites. Compos B Eng 236:109814

    Article  Google Scholar 

  74. Neumann TV, Dickey MD (2020) Liquid metal direct write and 3D printing: a review. Adv Mater Technol 5(9):2000070

    Article  Google Scholar 

  75. Bek M, Gonzalez-Gutierrez J, Kukla C, PušnikČrešnar K, Maroh B, SlemenikPerše L (2020) Rheological behaviour of highly filled materials for injection moulding and additive manufacturing: effect of particle material and loading. Appl Sci 10(22):7993

    Article  Google Scholar 

  76. Fu X, Huck D, Makein L, Armstrong B, Willen U, Freeman T (2012) Effect of particle shape and size on flow properties of lactose powders. Particuology 10(2):203–208

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Battelle Memorial Institute, Prime Contract No. FA8075-14-D-0015-Sub Contract Number 760900 and by the US Department of Defense, award DOTC-19-01-INIT0536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Guvendiren.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4735 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

House, A., Kuna, A., Hastings, D. et al. Effect of particle shape on rheology and printability of highly filled reactive inks for direct ink writing. Prog Addit Manuf 8, 1573–1585 (2023). https://doi.org/10.1007/s40964-023-00422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-023-00422-x

Keywords

Navigation