Skip to main content
Log in

The influence of the energy density on dimensional, geometric, mechanical and morphological properties of SLS parts produced with single and multiple exposure types

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Selective Laser Sintering (SLS) is a Powder Bed Fusion technology that embraces a large number of variables influencing the properties of the parts produced. The well-known dependence and complex interaction established between the main process parameters demands continuous empirical research for effective SLS monitoring. The assessment of the energy density supplied by the laser beam to the powder bed during the process, that depends on the combination of the laser power, hatch distance, scan speed and layer thickness, is frequently considered for that purpose. Therefore, this research intends to evaluate the influence of the energy density on the dimensional, geometric, mechanical and morphological properties of SLS parts produced with conventional Polyamide 12 material. In this study, we considered different hatching and contour parameters in the energy range between 0.158 J/mm3 and 0.398 J/mm3 through single and multiple exposure types defining individual and combined parameterization sets, respectively. Results from X-ray computed tomography, tensile tests and scanning electron microscopy show that the implementation of a skin/core configuration allows the production of SLS parts with a valuable set of properties, minimizing the trade-off between mechanical strength and overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. ASTM (2012) ASTM F2792 12a - Standard Terminology for Additive Manufacturing Technologies

  2. Chatham CA, Long TE, Williams CB (2019) A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog Polym Sci 93:68–95. https://doi.org/10.1016/j.progpolymsci.2019.03.003

    Article  Google Scholar 

  3. Wörz A, Wudy K, Drummer D et al (2018) Comparison of long-term properties of laser sintered and injection molded polyamide 12 parts. J Polym Eng 38:573–582. https://doi.org/10.1515/polyeng-2017-0227

    Article  Google Scholar 

  4. Kumar S (2003) Selective laser sintering: a qualitative and objective approach. J Miner Met Mater Soc 55:43–47

    Article  Google Scholar 

  5. Bourell DL, Watt TJ, Leigh DK, Fulcher B (2014) Performance limitations in polymer laser sintering. Phys Procedia 56:147–156. https://doi.org/10.1016/j.phpro.2014.08.157

    Article  Google Scholar 

  6. Gibson I, Rosen D, Stucker B (2010) Powder bed fusion processes. In: Additive manufacturing technologies - rapid prototyping to direct digital manufacturing. Springer International Publishing, Boston, pp 103–142

    Google Scholar 

  7. Duan B, Wang M (2011) Selective laser sintering and its application in biomedical engineering. MRS Bull 36:998–1005. https://doi.org/10.1557/mrs.2011.270

    Article  Google Scholar 

  8. Pavan M, Faes M, Strobbe D et al (2017) On the influence of inter-layer time and energy density on selected critical-to-quality properties of PA12 parts produced via laser sintering. Polym Test 61:386–395. https://doi.org/10.1016/j.polymertesting.2017.05.027

    Article  Google Scholar 

  9. Pilipović A, Drstvenšek I, Šercer M et al (2014) Mathematical model for the selection of processing parameters in selective laser sintering of polymer products. Adv Mech Eng. https://doi.org/10.1155/2014/648562

    Article  Google Scholar 

  10. Hofland EC, Baran I, Wismeijer DA (2017) Correlation of process parameters with mechanical properties of laser sintered PA12 parts. Adv Mater Sci Eng. https://doi.org/10.1155/2017/4953173

    Article  Google Scholar 

  11. Kiani A, Khazaee S, Badrossamay M et al (2020) An investigation into thermal history and its correlation with mechanical properties of PA12 parts produced by selective laser sintering process. J Mater Eng Perform 29:832–840. https://doi.org/10.1007/s11665-020-04640-0

    Article  Google Scholar 

  12. Majewski C, Zarringhalam H, Hopkinson N (2008) Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts. Proc Inst Mech Eng Part B J Eng Manuf 222:1055–1064. https://doi.org/10.1243/09544054JEM1122

    Article  Google Scholar 

  13. Amado-Becker A, Ramos-Grez J, José Yañez M et al (2008) Elastic tensor stiffness coefficients for SLS Nylon 12 under different degrees of densification as measured by ultrasonic technique. Rapid Prototyp J 14:260–270. https://doi.org/10.1108/13552540810907929

    Article  Google Scholar 

  14. Beitz S, Uerlich R, Bokelmann T et al (2019) Influence of powder deposition on powder bed and specimen properties. Materials. https://doi.org/10.3390/ma12020297

    Article  Google Scholar 

  15. Shi D, Gibson I (1997) Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp J 3:129–136. https://doi.org/10.1108/13552549710191836

    Article  Google Scholar 

  16. Caulfield B, McHugh PE, Lohfeld S (2007) Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Process Technol 182:477–488. https://doi.org/10.1016/j.jmatprotec.2006.09.007

    Article  Google Scholar 

  17. Beard MA, Ghita OR, Evans KE (2011) Monitoring the effects of selective laser sintering (SLS) build parameters on polyamide using near infrared spectroscopy. J Appl Polym Sci 121:3153–3158

    Article  Google Scholar 

  18. Tong Q, Xue K, Wang T, Yao S (2020) Laser sintering and invalidating composite scan for improving tensile strength and accuracy of SLS parts. J Manuf Process 56:1–11. https://doi.org/10.1016/j.jmapro.2020.04.056

    Article  Google Scholar 

  19. Czelusniak T, Amorim FL (2020) Influence of energy density on selective laser sintering of carbon fiber-reinforced PA12. Int J Adv Manuf Technol 111:2361–2376. https://doi.org/10.1007/s00170-020-06261-2

    Article  Google Scholar 

  20. Chunze Y, Yusheng S, Zhaoqing L et al (2020) Selective laser sintering forming accuracy control. In: selective laser sintering additive manufacturing technology. Academic Press, Cambridge, pp 671–716

    Google Scholar 

  21. Ho HCH, Gibson I, Cheung WL (1999) Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol 89–90:204–210. https://doi.org/10.1016/S0924-0136(99)00007-2

    Article  Google Scholar 

  22. Dewulf W, Pavan M, Craeghs T, Kruth J-P (2016) Using X-ray computed tomography to improve the porosity level of polyamide-12 laser sintered parts. CIRP Ann Manuf Technol 65:205–208. https://doi.org/10.1016/j.cirp.2016.04.056

    Article  Google Scholar 

  23. Wu J, Xu X, Zhao Z et al (2018) Study in performance and morphology of polyamide 12 produced by selective laser sintering technology. Rapid Prototyp J 24:813–820. https://doi.org/10.1108/RPJ-01-2017-0010

    Article  Google Scholar 

  24. Ling Z, Wu J, Wang X et al (2018) Experimental study on the variance of mechanical properties of polyamide 6 during multi-layer sintering process in selective laser sintering. Int J Adv Manuf Technol 6:1–8. https://doi.org/10.1007/s00170-018-3004-8

    Article  Google Scholar 

  25. Kummert C, Schmid HJ (2018) The Influence of Contour Scanning Parameters and Strategy on Selective Laser Sintering PA613 Build Part Properties. Proc 29th Annu Int Solid Free Fabr Symp 1582–1591

  26. Beal VE, Paggi RA, Salmoria GV, Lago A (2009) Statistical evaluation of laser energy density effect on mechanical properties of polyamide parts manufactured by selective laser sintering. J Appl Polym Sci 113:2910–2919

    Article  Google Scholar 

  27. Bacchewar PB, Singhal SK, Pandey PM (2007) Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc Inst Mech Eng Part B J Eng Manuf 221:35–52. https://doi.org/10.1243/09544054JEM670

    Article  Google Scholar 

  28. Goodridge RD, Tuck CJ, Hague RJM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57:229–267. https://doi.org/10.1016/j.pmatsci.2011.04.001

    Article  Google Scholar 

  29. Jain PK, Pandey PM, Rao PVM (2009) Effect of delay time on part strength in selective laser sintering. Int J Adv Manuf Technol 43:117–126. https://doi.org/10.1007/s00170-008-1682-3

    Article  Google Scholar 

  30. Franco A, Lanzetta M, Romoli L (2010) Experimental analysis of selective laser sintering of polyamide powders: an energy perspective. J Clean Prod 18:1722–1730. https://doi.org/10.1016/j.jclepro.2010.07.018

    Article  Google Scholar 

  31. Pilipović A, Bogdan V, Brajlih T, et al (2010) Influence of Laser Sintering Parameters on Mechanical Properties of Polymer Products. 3rd International Conference on Additive Technologies iCAT2010 Proceedings. DAAAM International, Vienna

  32. Starr TL, Gornet TJ, Usher JS (2011) The effect of process conditions on mechanical properties of laser-sintered nylon. Rapid Prototyp J 17:418–423. https://doi.org/10.1108/13552541111184143

    Article  Google Scholar 

  33. Wegner A, Witt G (2012) Correlation of process parameters and part properties in laser sintering using response surface modeling. Phys Procedia 39:480–490. https://doi.org/10.1016/j.phpro.2012.10.064

    Article  Google Scholar 

  34. Franco A, Romoli L (2012) Characterization of laser energy consumption in sintering of polymer based powders. J Mater Process Technol 212:917–926. https://doi.org/10.1016/j.jmatprotec.2011.12.003

    Article  Google Scholar 

  35. Castoro M (2013) Impact of laser power and build orientation on the mechanical properties of selectively laser sintered parts. In: Proceedings of the national conference on undergraduate research (NCUR). University of Wisconsin La Crosse, WI, 11–13 April 2013

  36. Wegner A, Harder R, Witt G, Drummer D (2015) Determination of optimal processing conditions for the production of polyamide 11 parts using the laser sintering process. IJEP 3:5–12

    Google Scholar 

  37. Pilipović A, Brajlih T, Drstvenšek I (2018) Influence of processing parameters on tensile properties of SLS polymer product. Polymers. https://doi.org/10.3390/polym10111208

    Article  Google Scholar 

  38. Lopes AC, Sampaio AM, Silva CS, Pontes AJ (2021) Prediction of SLS parts properties using reprocessing powder. Rapid Prototyp J 27:496–506. https://doi.org/10.1108/RPJ-04-2020-0076

    Article  Google Scholar 

  39. EOS GmbH (2016) Printed operations manual written and provided by EOS GmbH when purchasing the SLS equipment

  40. Moylan S, Slotwinski J, Cooke A et al (2014) An additive manufacturing test artifact. J Res Natl Inst Stand Technol 119:429–459

    Article  Google Scholar 

  41. International Organization for Standardization (ISO) (1996) BS EN ISO 527-2:1996, BS 2782-3: Method 322: ISO 527 Plastics — Determination of tensile properties. ISO 527-2 | Section 6: Test specimens. Annex A | Small test specimens - Figure A.1

  42. Puncochar DE (1997) Interpretation of geometric dimensioning and tolerancing, 3th ed. Industrial Press, Inc., New York

    Google Scholar 

Download references

Funding

This work was co-funded by the European Regional Development Fund through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project No. 47108, “SIFA”; Funding Reference: POCI-01-0247-FEDER-047108] and by the Foundation for Science and Technology (FCT) through the PhD scholarship 2020.04520.BD.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to A. C. Lopes.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.C., Sampaio, A.M. & Pontes, A.J. The influence of the energy density on dimensional, geometric, mechanical and morphological properties of SLS parts produced with single and multiple exposure types. Prog Addit Manuf 7, 683–698 (2022). https://doi.org/10.1007/s40964-021-00254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00254-7

Keywords

Navigation