Skip to main content

Advertisement

Log in

Mathematical design and preliminary mechanical analysis of the new lattice structure: “GE-SEZ*” structure processed by ABS polymer and FDM technology

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

In this study, the authors propose a new design of a novel class of lattice structures. The new design is based on two main geometrical properties, the “volume” and the “surface to volume ratio”. It takes advantage of the strongest column designed against buckling proposed by Keller (Arch Ration Mech Anal 5:275–285, 1960) and Seiranyan (J Appl Math Mech 51(2):272–275, 1987). The Schoen minimal gyroid is used as a reference to establish the necessary lightweight property of the proposed design. This is to say, the surface to volume ratio and the volume of the new class of structures and their gyroid equivalent are equal. Models are built using CAD software and printed with UP mini 2.0 using acrylonitrile butadiene styrene (ABS) copolymer. Moreover, compression tests are conducted, using “MTS Criterion—Model 45”. The results show that after the phases of elasticity, relaxation and plasticity, the structure (three samples) is stable in the sense that it did not buckle nor collapse. Furthermore, reaching 7.35 mm of platen displacement (14.7% of strain) and 7.5 kN of resistance (3 MPa of equivalent stress), an additional progressive hardening is observed due to material densification and friction phenomena. A normalized comparison between the proposed structure and several lattice structures is conducted, showing a higher competitive behavior of the new design. The results of this study could possibly be a major contribution in the fields of biomechanics, aeronautic, and mechanical parts design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. *SEZ: First letters of the last names of the Authors Saidou-El Jai-Zineddine.

    *GE-SEZ: Gyroid Equivalent SEZ.

References

  1. Schlaich M (2015) Elegant structures. Struct Eng Mag 93:10–13

    Google Scholar 

  2. Pillet M (2002) Apply the statistical process control (SPC), 3rd edition (French version). Les Editions d’Organisation, Paris

    Google Scholar 

  3. El Jai M, Herrou B, Benazza H (2013) Integration of a risk analysis method with holonic approach in an isoarchic context. Int J Eng Technol 5(6):5196–5206

    Google Scholar 

  4. El Jai M, Akhrif I, Herrou B, Benazza H (2015) Correction of the production master plan according to preventive maintenance constraints and equipments degradation state. Engineering 6:274–291. https://doi.org/10.4236/eng.2014.66032

    Article  Google Scholar 

  5. Ounnar F, Pujo P (2009) Pull control for job shop: holonic manufacturing system approach using multicriteria decision-making. J Intell Manuf. https://doi.org/10.1007/s10845-009-0288-4

    Article  Google Scholar 

  6. Pujo P, Broissin N, Ounnar F (2009) PROSIS: an isoarchic structure for HMS control. Eng Appl Artif Intell 22:1034–1045. https://doi.org/10.1016/j.engappai.2009.01.011

    Article  Google Scholar 

  7. El Jai M, Akhrif I, Abidine T, Moussa Djouma N, Herrou B, Benazza H, El Hammoumi M (2015) Intelligent process optimization into holonic manufacturing systems using TAGUCHI approach and UML modeling language. Int J Sci Eng Res 6(5):1099–1107

    Google Scholar 

  8. Payne CS, Youngcourt SS, Watrous MK (2006) Portrayals of F. W. Taylor across textbooks. J Manag Hist 12(4):385–407. https://doi.org/10.1108/17511340610692752

    Article  Google Scholar 

  9. Garza-Reyes JA, Torres RJ, Govindan K, Cherrafi A, Usha R (2018) A PDCA-based approach to environmental value stream mapping (E-VSM). J Clean Prod 180:335–348. https://doi.org/10.1016/j.jclepro.2018.01.121

    Article  Google Scholar 

  10. Attaran M (2017) Additive manufacturing: the most promising technology to alter the supply chain and logistics. J Serv Sci Manag 10:189–205. https://doi.org/10.4236/jssm.2017.103017

    Article  Google Scholar 

  11. Janssen R, Blankers I, Moolenburgh E, Posthumus B (2014) TNO: the impact of 3-D printing on supply chain management. TNO-Innovation for Life, Hague

    Google Scholar 

  12. Knofius N, Van der Heijden MC, Zijm WHM (2018) Consolidating spare parts for asset maintenance with additive manufacturing. Int J Prod Econ 208:269–280. https://doi.org/10.1016/j.ijpe.2018.11.007

    Article  Google Scholar 

  13. RaviPrakash M, Naga SC (2019) Additive manufacturing technology empowered complex electromechanical energy conversion devices and transformers. Appl Mater Today 14:35–50. https://doi.org/10.1016/j.apmt.2018.11.004

    Article  Google Scholar 

  14. Yung KC, Xiao TY, Choy HS, Wanga WJ, Cai ZX (2018) Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J Mater Process Technol 262:53–64. https://doi.org/10.1016/j.jmatprotec.2018.06.019

    Article  Google Scholar 

  15. Orme M, Madera I, Gschweitl M, Ferrari M (2018) Topology optimization for additive manufacturing as an enabler for light weight flight hardware. Designs 2(51):1–22. https://doi.org/10.3390/designs2040051

    Article  Google Scholar 

  16. Saadlaoui Y, Milan JL, Rossi JM, Chabrand P (2017) Topology optimization and additive manufacturing: comparison of conception methods using industrial codes. J Manuf Syst 43:178–186. https://doi.org/10.1016/j.jmsy.2017.03.006

    Article  Google Scholar 

  17. Liu J et al (2018) To, Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-018-1994-3

    Article  Google Scholar 

  18. Du Plessis A et al (2019) Beautiful and functional: a review of biomimetic design in additive manufacturing. Add Manuf J 27:408–427. https://doi.org/10.1016/j.addma.2019.03.033

    Article  Google Scholar 

  19. Xu Z, Zhang W, Zhou Y, Zhu J (2019) Multiscale topology optimization using feature-driven method. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2019.07.009(In Press)

    Article  Google Scholar 

  20. Brackett D, Ashcroft I, Hague R (2011) Topology optimization for additive manufacturing. Solid free from fabrication symposium. https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf. Accessed 10 Sept 2019

  21. Sabiston G, Il Yong K (2019) 3D topology optimization for cost and time minimization in additive manufacturing. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-019-02392-7

    Article  Google Scholar 

  22. Panesar A, Abdi M, Hickman D, Ashcroft I (2010) Strategies for functionally graded lattice structures derived using topology optimization for additive manufacturing. Addit Manuf J. https://doi.org/10.1016/j.addma.2017.11.008(In Press)

    Article  Google Scholar 

  23. Tao W, Leu MC (2016) Design of lattice structure for additive manufacturing. In: Proceedings of the international symposium on Flex Auto Cleveland (IEEE) pp 1–3, Ohio, USA

  24. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Amooghin AE, Mashhadikhan S, Sanaeepur H, Moghadassi A, Matsuura T, Ramakrishna S (2019) Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation. Prog Mater Sci 102:222–295. https://doi.org/10.1016/j.pmatsci.2018.11.002

    Article  Google Scholar 

  26. Moreira et al (2012) Method for producing nanoporous molded parts. United States Patent, US 8,206,626 B2, USA

  27. Zihao L, Ling W, Yu L, Yiyu F, Wei F (2019) Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol 179:10–40. https://doi.org/10.1016/j.compscitech.2019.04.028

    Article  Google Scholar 

  28. Bai Q, Bai Y (2014) Subsea pipeline design, analysis, and installation. Elsevier Edition. https://doi.org/10.1016/b978-0-12-386888-6.00004-3

    Article  Google Scholar 

  29. Calgaro JA, Saint-Martin JM (2005) Les Eurocodes—conception des bâtiments et des ouvrages de génie civil. du Moniteur Editions, Paris

    Google Scholar 

  30. European Commission of Normalization (2005) EN 1990:2002 standards, basis of structural design

  31. Jankovics D, Gohari H, Tayefe M, Barari A (2018) Developing topology optimization with additive manufacturing constraints in ANSYS®. IFAC Pap Online 51:1359–1364

    Article  Google Scholar 

  32. https://www.3ds.com/products-services/simulia/products/tosca/structure/topology-optimization/. Accessed 03 May 2019

  33. https://www.autodesk.com/solutions/generative-design. Accessed 03 Oct 2019

  34. https://web.altair.com/generative-design-report-download?submissionGuid=6aaa1ed4-b3d8-4841-ae66-1163702adfc3. Accessed 03 Oct 2019

  35. Khan S, Awan MJ (2018) A generative design technique for exploring shape variation. Adv Eng Inform 38:712–724. https://doi.org/10.1016/j.aei.2018.10.005

    Article  Google Scholar 

  36. Qiyin L et al (2019) A biomimetic generative optimization design for conductive heat transfer based on element-free Galerkin method. Int Commun Heat Mass Transf 100:67–72. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.001

    Article  Google Scholar 

  37. Soowon C, Nirvik S, Castro-Lacouture D, Pei-Ju YP (2019) Generative design and performance modeling for relationships between urban built forms, sky opening, solar radiation and energy. Energy Proced 158:3994–4002. https://doi.org/10.1016/j.egypro.2019.01.841

    Article  Google Scholar 

  38. Tadjbakhsh I, Keller JB (1962) Strongest columns and isoperimetric inequalities for eigenvalues. J Appl Mech 29(1):159–164. https://doi.org/10.1115/1.3636448

    Article  MathSciNet  MATH  Google Scholar 

  39. Keller JB (1960) The shape of the strongest column. Arch Ration Mech Anal 5:275–285

    Article  MathSciNet  Google Scholar 

  40. Cox ST (1992) The shape of the ideal column. Math Intell 14(1):16–24. https://doi.org/10.1007/BF03024137

    Article  MathSciNet  MATH  Google Scholar 

  41. Cox JS, Overtone ML (1992) On the optimal design of columns against buckling. J Math Anal 23(2):287–325

    MathSciNet  Google Scholar 

  42. Masur EP (1984) Optimal structural design under multiple eigenvalue constraints. Int J Solids Struct 20(3):211–231

    Article  MathSciNet  Google Scholar 

  43. Bratus AS, Seipanian AP (1983) Bimodal solutions in eigenvalues optimization problems. J Appl Math Mech 47(4):451–457

    Article  MathSciNet  Google Scholar 

  44. Seiranyan AP (1987) Multiple eigenvalues in optimization problems. J Appl Math Mech 51(2):272–275

    Article  MathSciNet  Google Scholar 

  45. Olhoff N, Seyranian AP (2008) Bifurcation and post-buckling analysis of bimodal optimum columns. Int J Solids Struct 45:3967–3995. https://doi.org/10.1016/j.ijsolstr.2008.02.003

    Article  MATH  Google Scholar 

  46. Ruocco E, Wang CM, Zhang H, Challamel N (2017) An approximate model for optimizing Bernoulli columns against buckling. Eng Struct 141:316–327. https://doi.org/10.1016/j.engstruct.2017.01.077

    Article  Google Scholar 

  47. Scherer M, Rudolf J (2013) Double-gyroid-structured functional materials synthesis and applications. Springer International Publishing, Cham

    Book  Google Scholar 

  48. Gandy Paul JF, Klinowski J (2000) Exact computation of the triply periodic G (Gyroid) minimal surface. Chem Phys Lett 321:363–371

    Article  Google Scholar 

  49. Schoen AH (1970) Infinite periodic minimal surfaces without self-intersections. NASA Technical Note D-5541, NASA

  50. Berger M, Gostiaux B (1987) Differential geometry: manifolds, curves and surfaces. Springer, New York

    MATH  Google Scholar 

  51. Stratasys-3D Printer (2019) ABS material datasheet. https://www.stratasys.com/materials/search/abs-m30. Accessed 03 Oct 2019

  52. Moore JD (1973) Acrylonitrile-butadiene-styrene (ABS)—a review. Composites 118:130

    Google Scholar 

  53. Mercier JP, Zambelli G, Kurz W (1999) Introduction to the material science (French version). Traité des Matériaux, 3rd edn. Presses Polytechniques et Inversitaires Romandes, Lausanne

    Google Scholar 

  54. Carrega M et al (2000) Industrial materials: polymeric materials (French Edition). Dunod, Paris

    Google Scholar 

  55. Alkhuder A (2014) Mixing structuration of ABS/PC for recylcing of DEEE. Dissertation, Conservatoire National des Arts Et Métiers, Paris

  56. Wypych G (2012) Handbook of polymers. ChemTec Edition, Paris

    Google Scholar 

  57. Khan SZ, Masood SH, Ibrahim E, Ahmad Z (2019) Compressive behaviour of neovius triply periodic minimal surface cellular structure manufactured by fused deposition modelling. Virtual Phys Prototyp 14(4):360–370. https://doi.org/10.1080/17452759.2019.1615750

    Article  Google Scholar 

  58. Gautam R, Sridhar I (2018) Compressive behavior of strut reinforced kagome structures fabricated by fused deposition modeling. In: Proceedings of the 3rd international conference on progress in additive manufacturing (Pro-AM 2018), pp 220–225. https://doi.org/10.25341/D4S88Q

  59. Maconachie T, Tino R, Lozanovski B et al (2020) The compressive behaviour of ABS gyroid lattice structures manufactured by fused deposition modelling. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05239-4

    Article  Google Scholar 

  60. Bergström J (2015) Mechanics of solid polymers theory and computational modeling. Plastics design library (PDL) series, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  61. Perez J (1998) Physics and mechanics of amorphous polymers. A.A. Balkema Publishers, Rotterdam

    Google Scholar 

  62. Michel F, Yves G (2002) Chemistary and et physico-chemistary of polymers (French version). Dunod Editions, Paris

    Google Scholar 

  63. Young Hugh D, Freedman RA (2012) Sears and Zemansky’s-University physics with modern physics, 13th edn. Addison-Wesley, New York

    Google Scholar 

  64. Gu Q, Joel PC, Elgamal A, Yang Z (2009) Finite element response sensitivity analysis of multi-yield-surface J2 plasticity model by direct differentiation method. Comput Methods Appl Mech Eng 198:2272–2285

    Article  Google Scholar 

  65. Abedian A, Jamshid P, Duster A, Rank E (2013) The finite cell method for the J2 flow theory of plasticity. Finite Elem Anal Des 69:37–47. https://doi.org/10.1016/j.finel.2013.01.006

    Article  MATH  Google Scholar 

  66. Yang ZX, Xu TT, Li XS (2018) J2-Deformation type model coupled with state dependent dilatancy. Comput Geotech 105:129–141. https://doi.org/10.1016/j.compgeo.2018.09.018

    Article  Google Scholar 

  67. Cervera M, Chiumenti M (2009) Size effect and localization in J2 plasticity. Int J Solids Struct 46:3301–3312. https://doi.org/10.1016/j.ijsolstr.2009.04.025

    Article  MATH  Google Scholar 

  68. François D, Pineau A, Zaoui A (1992) Mechanical behavior of materials-elasticity and plasticity (French version). Hermes Editions, Paris

    MATH  Google Scholar 

  69. Makke A (2011) Mechanical properties of homogenous polymers and block copolymers : a molecular dynamics simulation approach. Dissertation, Claude Bernard University-Lyon I, Lyon, France

  70. Odoni L (1999) Mechanical properties and scale effects (French version). Dissertation, Ecole Centrale de Lyon, France

  71. Arruda EM, Boyce MC (1993) Evolution of plastic anisotropy in amorphous polymers during finite straining. Int J Plast 9:697–720

    Article  Google Scholar 

  72. https://www.3dplatform.com/. Accessed 03 July 2019

  73. https://www.germanreprap.com/printer/x400EN.aspx. Accessed 03 July 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostapha El Jai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1: Symmetry proof of the pinned–pinned KT column

Symmetries definition:

  1. (a)

    Symmetry between \(\left( {x,y_{1} \left( x \right)} \right)\) and \(\left( {x,f_{2} \left( x \right)} \right)\) according to the \(\left( {\Delta_{1} :x = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} \right)\) axis;

  2. (b)

    Symmetry of \(\left( {x,f_{2} \left( x \right)} \right)\) itself around the \(\left( {\Delta_{2} :x = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} \right)\) axis;

  3. (c)

    Symmetry between \(\left( {x,f_{1} \left( x \right)} \right)\) and \(\left( {x,f_{3} \left( x \right)} \right)\) according to the \(\left( {\Delta_{2} :x = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} \right)\) axis;

Proof

Symmetry (a)

To prove the symmetry between \(\left( {x,f_{1} \left( x \right)} \right)\) and \(\left( {x,f_{2} \left( x \right)} \right)\) relatively to the axis \(\left( {\Delta_{1} :x = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} \right)\), we prove that:

$$f_{1} \left( x \right) = f_{2} \left( {x + 2\alpha } \right)\quad {\text{where}} \,\alpha = \frac{1}{4} - x \forall x \in \left[ {0,\frac{1}{4} } \right].$$
(24)

We calculate the right member of the Eq. (24):

$$f_{2} \left( {x + 2\alpha } \right) = f_{2} \left( {x + 2\left( {\frac{1}{4} - x} \right)} \right) = f_{2} \left( { - x + \frac{1}{2}} \right)$$
$$f_{2} \left( {x + 2\alpha } \right) = f_{2} \left( { - x + \frac{1}{2}} \right) = \frac{3}{2}\left( { - 3 + 16\left( { - x + \frac{1}{2}} \right) - 16\left( { - x + \frac{1}{2}} \right)^{2} } \right).$$

Thus \(y_{2} \left( {x + 2\alpha } \right) = \frac{3}{2}\left( {1 - 16x^{2} } \right) = y_{1} \left( x \right)\)

$$\forall x \in \left[ {0,\frac{1}{4} } \right].$$

Symmetry (b)

To prove the symmetry between \(\left( {x,f_{2} \left( x \right)} \right)\) to itself around the axis \(\left( {\Delta_{1} :x = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} \right)\), we prove that:

$$f_{2} \left( x \right) = f_{2} \left( {x + 2\alpha } \right)\quad {\text{where}}\,\alpha = \frac{1}{2} - x\quad \forall x \in \left[ {\frac{1}{4},\frac{1}{2} } \right]$$
(24a)

We calculate the right member of the Eq. (24a):

$$f_{2} \left( {x + 2\alpha } \right) = f_{2} \left( {x + 2\left( {\frac{1}{2} - x} \right)} \right) = f_{2} \left( { - x + 1} \right)$$
$$f_{2} \left( {x + 2\alpha } \right) = f_{2} \left( { - x + 1} \right) = \frac{3}{2}\left( { - 3 - 16x^{2} + 16x} \right)$$

Thus \(f_{2} \left( {x + 2\alpha } \right) = f_{2} \left( x \right)\quad \forall x \in \left[ {0,\frac{1}{2} } \right].\)

Symmetry (c)

To prove the symmetry between \(\left( {x,f_{1} \left( x \right)} \right)\) and \(\left( {x,f_{2} \left( x \right)} \right)\) relatively to the axis \(\left( {\Delta_{1} :x = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} \right)\), we prove that:

$$f_{1} \left( x \right) = f_{3} \left( {x + 2\alpha } \right)\quad {\text{where}}\,\alpha = \frac{1}{2} - x\quad \forall x \in \left[ {0,\frac{1}{4} } \right]$$
(24b)

We calculate the right member of the Eq. (24b):

$$f_{3} \left( {x + 2\alpha } \right) = f_{3} \left( {x + 2\left( {\frac{1}{2} - x} \right)} \right) = f_{3} \left( { - x + 1} \right)$$
$$f_{3} \left( {x + 2\alpha } \right) = f_{3} \left( { - x + 1} \right) = \frac{3}{2}\left( { - 15 - 16\left( { - x + 1} \right)^{2} + 32\left( { - x + 1} \right)} \right)$$
$$f_{3} \left( {x + 2\alpha } \right) = \frac{3}{2}\left( {1 - 16x^{2} } \right)$$

Thus \(f_{3} \left( {x + 2\alpha } \right) = f_{1} \left( x \right)\quad \forall x \in \left[ {0,\frac{1}{2} } \right].\)

Appendix A2: SVR and volume of the GE-SEZ structure calculation

The external and internal lateral surfaces of the SEZ structure, are calculated using the Gauss formula (25):

$$S_{{{\text{lateral}}}} = 2\pi \mathop \int \limits_{a}^{b} g\left( x \right)\sqrt {1 + \left( {g^{\prime}\left( x \right)} \right)^{2} } {\text{d}}x$$
(25)

We apply Eq. (15) on the curve \(C_{{{\text{ext}}}} \left( {x,\tilde{y}_{{{\text{ext}}}} } \right)\) presented in the Eq. (12.2):

$$S_{{{\text{lateral}} \left[ {0,\frac{L}{4m}} \right]}} = 2\pi \mathop \int \limits_{0}^{\frac{L}{4m}} \tilde{y}_{{{\text{ext}}}} \left( x \right)\sqrt {1 + \left( {\tilde{y}_{{{\text{ext}}}}^{\prime } \left( x \right)} \right)^{2} } {\text{d}}x.$$
(26)

This equation describes a quart of the surface of a SEZ. In other words, since the authors consider the different symmetries of the SEZ structure, as proved in the Sect. 3.1.1, the lateral revolution surface of the SEZ will be equal to four times the surface calculated by the Eq. (26). Thus, the total external surface is given by Eq. (17):

$$S_{{{\text{SEZ}} \left[ {0,\frac{L}{m}} \right]}} = 4 \times \left( {2\pi \mathop \int \limits_{0}^{\frac{L}{4m}} \tilde{y}_{{{\text{ext}}}} (x)\sqrt {1 + \left( {\tilde{y}_{{{\text{ext}}}}^{\prime } \left( x \right)} \right)^{2} } {\text{d}}x} \right).$$
(27)

It should be noted that in the Eq. (15), the index of \(S_{{{\text{lateral}} \left[ {0,\frac{L}{4m}} \right]}}\) specifies that the calculation is made on the interval \(\left[ {0,\frac{L}{4m}} \right]\). The index of \(S_{{{\text{SEZ}} \left[ {0,\frac{L}{m}} \right]}}\) mentions that the calculation of this surface is performed on the whole length of the SEZ in the corresponding interval of \(\left[ {0,\frac{L}{m}} \right]\) (see Fig. 5). An equivalent calculus could be performed by Pappus theorems [52], using the orthogonal distance between the barycenter of the function that will be spinning.

From the mapping (4), we recall that:

$$\tilde{y}_{{{\text{ext}}}} \left( x \right) = c\left( {a\left( {1 - 16\left( {d x} \right)^{2} } \right) + b} \right).$$

The derivative of \(\tilde{y}_{{{\text{ext}}}} \left( x \right)\) is equal to:

$$\tilde{y}_{{{\text{ext}}}}^{\prime } \left( x \right) = \frac{{d\left( {\tilde{y}_{{{\text{ext}}}} \left( x \right)} \right)}}{{{\text{d}}x}} = 32acd^{2} x.$$
(28)

The Eq. (27) becomes:

$${\text{SEZ}}_{{ \left[ {0,\frac{L}{m}} \right]}} = 8\pi \mathop \int \limits_{0}^{\frac{L}{4m}} c\left( {a\left( {1 - 16\left( {{\text{d}}x} \right)^{2} } \right) + b} \right)\sqrt {1 + \left( {32acd^{2} x} \right)^{2} } {\text{d}}x,$$

which leads to the expression (29):

$$\begin{array}{c} \begin{array}{c} P_{n,m}\left(a,b\right)=\frac{8\ \pi \ \left(A\times B-C\times D\right)}{E}-\gamma \\ \left\{ \begin{array}{c} \ \\ A=A_{n,m}\left(a,b\right)=256a\left(a+b\right)d^2c^2+1 \\ B=B_{n,m}\left(a,b\right)={\mathrm{log} \left(\sqrt{32a*c*d^2+1}+32acd^2x_1\right)\ } \\ C=C_{n,m}\left(a,b\right)=32acd^2x_1\sqrt{{\left(32acd^2x_1\right)}^2+1} \\ D=D_{n,m}\left(a,b\right)=256ac^2d^2\left(a\left(8d^2x^2_1-1\right)-b\right)+1 \\ E_{n,m}\left(a,b\right)=16{\left(32acd^2\right)}^2 \end{array} \right. \end{array} \\ s.t\ \left\{ \begin{array}{c} c=\frac{L}{2n\left(a+b\right)} \\ d=\frac{m}{L} \\ x_1=\frac{L}{4m} \\ \gamma ={\left({S}/{V_{Gy}}\right)}_{Gyroid} \\ V_{Gy}:the\ effective\ volume\ of\ the\ Gyroid \end{array} \right. \end{array}$$
(29)

Since the cubic volume, for \(n^{2} \times m\) SEZ structures confined into the is equation to L3, the \({\text{SVR}}_{{\left( {\text{GE } - \text{ SEZ}} \right)_{{n^{2} \times m}} }}\) is obtained by the following equation:

$${\text{SVR}}_{{\left( {\text{GE } - \text{ SEZ}} \right)_{{n^{2} \times m}} }} = \frac{{n^{2} {\text{mS}}_{{{\text{SEZ}} \left[ {0,\frac{L}{m}} \right]}} }}{{L^{3} }}.$$
(30)

We calculate the volume of the GE-SEZ assembly as a sum of SEZs volumes Eq. (31).

The volume of a SEZ unit if given by the Gauss formula presented in the Eq. (32):

$$V_{{\text{GE } - \text{ SEZ}}} = n^{2} \times m V_{{{\text{SEZ}}}}$$
(31)
$$V_{{{\text{SEZ}}}} = \pi \mathop \int \limits_{0}^{\frac{L}{m}} \left( {y_{{{\text{ext}}}}^{2} - y_{{\text{int}}}^{2} } \right){\text{d}}x$$
(32)

Since the authors consider the symmetries introduced in the Sect. 3.1.1 (see “Appendix A1”), the volume of the SEZ can be calculated by:

$$V_{{{\text{SEZ}}}} = \pi 4 \times \left( {\mathop \int \limits_{0}^{\frac{L}{4m}} \left( {y_{{{\text{ext}}}}^{2} - y_{{\text{int}}}^{2} } \right){\text{d}}x} \right).$$
(33)

where

$$y_{{{\text{ext}}}}^{2} - y_{{\text{int}}}^{2} = \left( {y_{{{\text{ext}}}} - y_{{\text{int}}} } \right)\left( {y_{{{\text{ext}}}} + y_{{\text{int}}} } \right)$$

according to the Eq. (11.2):

$$y_{{{\text{ext}}}} - y_{{\text{int}}} = e.$$

And according to the expression of the functions \(y_{{{\text{ext}}}}\) and \(y_{{\text{int}}}\):

$$V_{{{\text{SEZ}}}} = \frac{4\pi e}{{nm}}\left[ {Ln + enm - \frac{{aL^{2} }}{{12\left( {a + b} \right)}}} \right].$$
(34)

Hence, the volume of the \({\text{GE } - \text{ SEZ}}_{n \times n \times m}\) assembly is equal to:

$$V_{{\text{GE } - \text{ SEZ}}} = n^{2} m V_{{{\text{SEZ}}}} = 4\pi en\left[ {Ln + enm - \frac{{aL^{2} }}{{12\left( {a + b} \right)}}} \right].$$
(35)

The volume equivalence is ensured by the equality between the GE-SEZ volume and the volume of the Gyroïd as shown below:

$$\frac{{V_{{\text{GE } - \text{ SEZ}}} }}{{V_{{\text{G}}} }} = 1.$$
(36)

Reporting the expression (35) in (38), the second characteristic equation corresponds to the Eq. (37):

$$4\pi en\left[ {Ln + enm - \frac{{aL^{2} }}{{12\left( {a + b} \right)}}} \right] - V_{{\text{G}}} = 0$$
(37)
$$\begin{gathered} A_{a,b} e^{2} + B_{a,b} e + C_{a,b} = 0 \hfill \\ \left\{ {\begin{array}{*{20}l} {A_{a,b} = \frac{{4\pi n^{2} m}}{{V_{{\text{g}}} }}} \hfill \\ {B_{a,b} = \frac{4\pi n}{{V_{{\text{g}}} }}\left( {Ln - \frac{{aL^{2} }}{{12\left( {a + b} \right)}}} \right)} \hfill \\ {C = - 1} \hfill \\ \end{array} } \right.. \hfill \\ \end{gathered}$$
(38)

The characteristic Eq. (37) permits to calculate the thickness e, that permits to ensure the second characteristic equation, that is to say, the equality of the volumes of the GE-SEZ and the gyroid.

The discriminant of the equation is given by:

$$\Delta = B_{a,b}^{2} - 4 A_{a,b} C_{a,b} .$$

Hence

$$\Delta = \left( {\frac{4\pi n}{{V_{{\text{g}}} }}\left( {Ln - \frac{{aL^{2} }}{{12\left( {a + b} \right)}}} \right)} \right)^{2} + 4\left( {\frac{{4\pi n^{2} m}}{{V_{{\text{g}}} }}} \right).$$

Since the parameters n, m and Vg are strictly positive, the discriminant is also strictly positive.

So the roots of the Eq. (37) are defined as:

$$e = \left\{ {\begin{array}{*{20}c} {e^{ + } = \frac{{ - B_{a,b} + \sqrt \Delta }}{{2A_{a,b} }}} \\ {e^{ - } = \frac{{ - B_{a,b} - \sqrt \Delta }}{{2A_{a,b} }}} \\ \end{array} } \right..$$
(39)

Appendix A3: Statistics on dimensions measurement of the \(\left( {{\text{GE-SEZ}}} \right)_{{20 \times 20 \times 6}}\) and the cylindrical specimens

Table 8 groups the statistics of the dimension measurement related to the biggest diameter, neck diameter (smallest diameter), the width and height of the \(\left( {{\mathbf{GE}}{\text{-}}{\mathbf{SEZ}}} \right)_{{{\mathbf{20}} \times {\mathbf{20}} \times {\mathbf{6}}}}\) manufactured.

Table 8 Statistics related to \(\left( {\text{GE-} \text{ SEZ}} \right)_{20 \times 20 \times 6}\) samples dimensions

Table 9 groups the statistics of the dimension measurement related to the diameter and height of the cylindrical specimens manufactured.

Table 9 Statistics of dimensions of the cylindrical specimens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Jai, M., Saidou, N., Zineddine, M. et al. Mathematical design and preliminary mechanical analysis of the new lattice structure: “GE-SEZ*” structure processed by ABS polymer and FDM technology. Prog Addit Manuf 6, 93–118 (2021). https://doi.org/10.1007/s40964-020-00148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-020-00148-0

Keywords

Navigation