Skip to main content
Log in

Effect of Er Addition and Solution Treatment on the Microstructure and Mechanical Properties of Hypoeutectic Al–10%Mg2Si–3.5%Cu Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of Er addition and solution treatment on the microstructure characteristics, tensile properties, and fracture behavior of a hypoeutectic Al–10%Mg2Si–3.5%Cu alloy were systematically studied. The results showed that the addition of 0.45 wt% Er to hypoeutectic Al–10Mg2Si alloy without and with the addition of 3.5 wt% Cu can significantly reduce the grain sizes of the eutectic Mg2Si phase and α-Al/Mg2Si eutectic cell, and transform the morphology of the eutectic Mg2Si from coarse Chinese characters to thin stripes, dots, and fibers. The modification of eutectic Mg2Si is attributed to the inhibition of Er on the heterogeneous nucleation of AlP by forming Er, P-containing phases, and the enrichment of Er atoms around eutectic Mg2Si, which inhibits the growth of eutectic Mg2Si and promotes a change in its growth direction. The solid solution treatment causes the eutectic Mg2Si to tend towards spheroidization, which is promoted by the addition of Er. The addition of 0.45 wt% Er simultaneously improves the strength and plasticity of the cast alloys without and with the addition of 3.5 wt% Cu. The solid solution treatment further improved the tensile properties of the studied alloys. The improvement in strength of the alloy after as-cast and T6 treatment is due to the obstruction of fine eutectic Mg2Si and containing-Er/Cu intermetallic compound particles on dislocations, while the improvement of plasticity mainly lies in the reduction of stress concentration and stress uniformity around eutectic Mg2Si and intermetallic compounds caused by the regularity and spheroidization of their morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. F. Yan, Development of high strength Al–Mg2Si–Mg based alloy for high pressure diecasting process. Brunel University. PhD thesis (2013)

  2. S. Ji, D. Watson, Z. Fan, M. White, Development of a super ductile diecast Al–Mg–Si alloy. Mater. Sci. Eng. A 556, 824–833 (2012)

    Article  CAS  Google Scholar 

  3. J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Equilibrium pseudobinary Al–Mg2Si phase diagram. Mater. Sci. Technol. 17, 494–496 (2001)

    Article  CAS  Google Scholar 

  4. X.F. Wu, K.Y. Wang, R.D. Zhao, F.F. Wu, Enhanced mechanical properties of hypoeutectic Al–10Mg2Si cast alloys by Bi addition. J. Alloys Compd. 767, 163–172 (2018)

    Article  CAS  Google Scholar 

  5. W.Q. Jiang, X.F. Xu, Y.G. Zhao, Z. Wang, C. Wu, D. Pan, Z.Y. Meng, Effect of the addition of Sr modifier in different conditions on microstructure and mechanicalproperties of T6 treated Al–Mg2Si in-situ composite. Mater. Sci. Eng. A 721, 263–273 (2018)

    Article  CAS  Google Scholar 

  6. R. Du, D. Yuan, F. Li, D.C. Zhang, S.S. Wu, S.L. Lü, Effect of in-situ TiB2 particles on microstructure and mechanical properties of Mg2Si/Al composites. J. Alloys Compd. 776, 536–542 (2019)

    Article  CAS  Google Scholar 

  7. C. Li, C. Wang, P.K. Ma, J. Xu, Z.Z. Yang, M. Zha, J.G. Wang, H.Y. Wang, Effect of Sb modification on microstructure and mechanical properties of hypoeutectic Al–11Mg2Si alloy. Mater. Sci. Eng. A 782, 1–16 (2020)

    Article  Google Scholar 

  8. X.W. Hu, F.G. Jiang, F.R. Ai, H. Yan, Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J. Alloys Compd. 538, 21–27 (2012)

    Article  CAS  Google Scholar 

  9. M. Colombo, E. Gariboldi, A. Morri, Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties. J. Alloys Compd. 708, 1234–1244 (2017)

    Article  CAS  Google Scholar 

  10. P. Pandee, U. Patakham, C. Limmaneevichitr, Microstructural evolution and mechanical properties of Al–7Si–0.3Mg alloys with erbium additions. J. Alloys Compd. 728, 844–853 (2017)

    Article  CAS  Google Scholar 

  11. G.K. Sigworth, Fundamentals of solidification in aluminum castings. Int. J. Metals Cast. 8, 7–20 (2014)

    Google Scholar 

  12. M. Emamy, N. Nemati, A. Heidarzadeh, The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15%Mg2Si composite. Mater. Sci. Eng. A 527, 2998–3004 (2010)

    Article  Google Scholar 

  13. Y.T. Li, Z.Y. Liu, Q.K. Xia, Y.B. Liu, Grain refinement of the Al–Cu–Mg–Ag alloy with Er and Sc additions. Metall. Mater. Trans. A 38, 2853–2861 (2007)

    Article  Google Scholar 

  14. Y.C. Huang, C.C. Zhang, X.W. Ren, Y. Liu, S.Z. Chen, Y.L. Wang, Existence form of trace Er in Al–Zn–Mg–Cu alloy and its Genetic Effect. Rare Metal Mat. Eng. 48, 2848–2856 (2019)

    CAS  Google Scholar 

  15. W.R. Osório, L.R. Garcia, P.R. Goulart, A. Garcia, Effects of eutectic modification and T4 heat treatment on mechanical properties and corrosion resistance of an Al–9 wt% Si casting alloy. Mater. Chem. Phys. 106(2–3), 343–349 (2007)

    Article  Google Scholar 

  16. Y. Jin, H. Fang, S. Wang, R. Chen, Y. Su, J. Guo, Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites. Mater. Sci. Eng. A 831, 142227 (2022)

    Article  CAS  Google Scholar 

  17. Z.D. Li, C. Li, Y.C. Liu, L.M. Yu, Q.Y. Guo, H.J. Li, Effect of heat treatment on microstructure and mechanical property of Al–10%Mg2Si alloy. J. Alloys Compd. 663, 16–19 (2016)

    Article  CAS  Google Scholar 

  18. P. Biswas, M.K. Mondal, H. Roy, D. Mandal, Microstructural evolution and hardness property of in situ Al–Mg2Si composites using one-step gravity casting method. Can. Metall. Q. 56(3), 340–348 (2017)

    Article  CAS  Google Scholar 

  19. S.R. Wang, R. Ma, Y.Z. Wang, Y. Wang, L.Y. Yang, Growth mechanism of primary silicon in cast hypoeutectic Al−Si alloys. Trans. Nonferrous Met. Soc. China 22, 1264–1269 (2012)

    Article  CAS  Google Scholar 

  20. J.C. Chenc, M.X. Li, Z.Y. Yu, Z.Y. Meng, C. Wang, Z.Z. Yang, H.Y. Wang, Simultaneous refinement of α-Mg grains and β-Mg17Al12 in Mg-Al based alloys via heterogeneous nucleation on Al8Mn4Sm. J. Magnes. Alloy 11, 348–360 (2023)

    Article  Google Scholar 

  21. J.H. Li, M. Albu, F. Hofer, P. Schumacher, Solute adsorption and entrapment during eutectic Si growth. Acta Mater. 83, 187–202 (2015)

    Article  CAS  Google Scholar 

  22. J.M. Rigsbee, H.I. Aaronson, A computer modeling study of partially coherent fcc: bcc boundaries. Acta Metall. Mater. 27, 351–363 (1979)

    Article  CAS  Google Scholar 

  23. C. Li, X.F. Liu, Y.Y. Wu, Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys. J. Alloys Compd. 465, 145–150 (2008)

    Article  CAS  Google Scholar 

  24. J.Y. Sun, C. Li, X.F. Liu, L.M. Yu, H.J. Li, Y.C. Liu, Investigation on AlP as the heterogeneous nucleus of Mg2Si in Al–Mg2Si alloys by experimental observation and first-principles calculation. Results Phys. 8, 146–152 (2018)

    Article  Google Scholar 

  25. H.C. Shin, J.Y. Son, B.K. Min, Y.S. Choi, K.M. Cho, D.H. Cho, I.M. Park, The effect of Ce on the modification of Mg2Si phases of as-cast eutectic Mg-Si alloys. J. Alloys Compd. 792, 59–68 (2019)

    Article  Google Scholar 

  26. C. Li, Y.Y. Wu, H. Li, X.F. Liu, Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys. Acta Mater. 59, 1058–1067 (2011)

    Article  CAS  Google Scholar 

  27. T.Y. Liu, X. Zou, C. Yang, Y. Pan, Y.Y. Ren, Y.M. Li, Investigation on morphology of primary Mg2Si in Al–20 wt%Mg2Si composite with experiment and first-principle calculations. Mater Charact 187, 111836 (2022)

    Article  CAS  Google Scholar 

  28. A.M.A. Mohamed, F.H. Samuel, Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys. Mater. Sci. Eng. A 543, 22–34 (2012)

    Article  CAS  Google Scholar 

  29. F.L. Wang, J.J. Bhattacharyya, S.R. Agnew, Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals application to magnesium alloys. Mater. Sci. Eng. A 666, 114–122 (2016)

    Article  CAS  Google Scholar 

  30. G.F. Xu, S.Z. Mou, J.J. Yang, T.N. Jin, Z.R. Nie, Z.M. Yin, Effect of trace rare earth element Er on Al-Zn-Mg alloy. Trans. Nonferrous Met. Soc. China 16, 598–603 (2006)

    Article  CAS  Google Scholar 

  31. M. Shakoori Oskooie, H. Asgharzadeh, H.S. Kim, Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure. J. Alloys Compd. 632, 540–548 (2015)

    Article  CAS  Google Scholar 

  32. S.W. Pan, X.H. Chen, X.L. Zhou, Z.D. Wang, K.X. Chen, Y.D. Cao, F. Lu, S.H. Li, Micro-alloying effect of Er and Zr on microstructural evolution and yield strength of Al–3Cu (wt%) binary alloys. Mater. Sci. Eng. A 790, 139391 (2020)

    Article  CAS  Google Scholar 

  33. C. Xu, Z.Y. Liu, S. Bai, Y. Li, L.H. Lin, Alloying behavior of erbium in an Al–Cu–Mg alloy. J. Alloys Compd. 505, 201–205 (2010)

    Article  Google Scholar 

  34. M.R. Ghorbani, M. Emamy, N. Nemati, Microstructural and mechanical characterization of Al–15%Mg2Si composite containing chromium. Mater. Des. 32, 4262–4269 (2011)

    Article  CAS  Google Scholar 

  35. P. Biswas, D. Mandal, M.K. Mondal, Compressive failure analysis of in-situ Al–Mg2Si composites: experiment and finite element modelling. Eng. Fract. Mech. 277, 108986 (2023)

    Article  Google Scholar 

  36. X. Zhang, J.Y. Hu, B.X. Dong, X. Li, S.Q. Kou, S. Zhang, F. Qiu, Effect of Cu and Zn elements on morphology of ceramic particles and interfacial bonding in TiB2/Al composites. Ceram. Int. 48, 25894–25904 (2022)

    Article  CAS  Google Scholar 

  37. A. Weck, D.S. Wilkinson, E. Maire, Observation of void nucleation, growth and coalescence in a model metal matrix composite using X-ray tomography. Mater. Sci. Eng. A 488, 435–445 (2008)

    Article  Google Scholar 

  38. A. Razaghiana, A. Bahrami, M. Emamy, The influence of Li on the tensile properties of extruded in situ Al–15%Mg2Si composite. Mater. Sci. Eng. A 532, 346–353 (2012)

    Article  Google Scholar 

  39. A. Zhu, B.M. Gable, G.J. Shiflet, E.A. Starke Jr., Trace element effects on precipitation in Al–Cu–Mg–(Ag, Si) alloys: a computational analysis. Acta Mater. 52(12), 3671–3679 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51971106), the Education Department of Jiangxi Province (Grant No. GJJ2202921, GJJ2202905), the Liaoning Natural Science Foundation of China (Grant No. 2019-MS-171), and the Programs for Liaoning Innovative Talents and Liaoning Distinguished Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wu, F. & Zhao, R. Effect of Er Addition and Solution Treatment on the Microstructure and Mechanical Properties of Hypoeutectic Al–10%Mg2Si–3.5%Cu Alloy. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01346-0

Keywords

Navigation