Skip to main content
Log in

Effect of Austempering Conditions on the Corrosion Behavior of HSADI Alloyed with Niobium

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present work studied the effect of the austempering heat treatment parameters on high silicon austempered ductile iron (HSADI) alloyed with 0.6 and 0.9 wt% Nb in the resulting microstructure and corrosion resistance. Samples were austenitizing at 1050 °C for 2 h followed by austempering treatment at 290, 320, and 350 °C for 60, 90, and 120 min and finally air-cooled. Scanning electron microscopy and X-ray diffraction were used to evaluate the microstructural evolution. These techniques revealed that the microstructures consisted of a mixture of graphite nodules, carbon-rich austenite, acicular ferrite, and niobium carbides in the matrix. To assess the influence of these carbides and heat treatment parameters on the corrosion resistance, potentiodynamic tests were conducted in 1N H2SO4 solution as an electrolyte. The results showed that with the Nb content in high silicon ductile iron, both carbon-rich austenite and the C content in the austenite also increased, and significantly reduced the corrosion rate on HSADI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. B. Wang, F. Qiu, G.C. Barber, Y. Pan, W. Cui, R. Wang, Microstructure, wear behaviour and surface hardening of austempered ductile iron. J. Market. Res. 9(5), 9838–9855 (2020). https://doi.org/10.1016/j.jmrt.2020.06.076

    Article  CAS  Google Scholar 

  2. K. Jaśkowiec, A. Opaliński, P. Kustra, Prediction of selected mechanical properties in austempered ductile iron with different wall thickness by the decision support systems. Arch. Foundry Eng. (2023). https://doi.org/10.24425/afe.2023.144306

    Article  Google Scholar 

  3. C. Liu, Y. Du, X. Wang, Q. Zheng, X. Zhu, D. Zhang, D. Liu, C. Yang, B. Jiang, Comparison of the tribological behavior of quench-tempered ductile iron and austempered ductile iron with similar hardness. Wear 520–521, 204668 (2023). https://doi.org/10.1016/j.wear.2023.204668

    Article  CAS  Google Scholar 

  4. P. Sellamuthu, D.H. Samuel, D. Dinakaran, V.P. Premkumar, Z. Li, S. Sridhar, Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption. Metals 8(1), 53 (2018). https://doi.org/10.3390/met8010053

    Article  CAS  Google Scholar 

  5. H. Krawiec, V. Vignal, J. Lelito, A. Krystianiak, P. Ozga, In-situ monitoring of the corrosion behaviour of austempered ductile iron (ADI) under cyclic salt spray exposure. Corros. Sci. 185, 109437 (2021). https://doi.org/10.1016/j.corsci.2021.109437

    Article  CAS  Google Scholar 

  6. E.C. García, A. Cruz-Ramírez, J.A. Romero-Serrano, R. Sánchez-Alvarado, V. Gutiérrez-Pérez, G. Reyes-Castellanos, Nodule count effect on microstructure and mechanical properties of hypo-eutectic ADI alloyed with nickel. J. Min. Metall. Sect. B 57(1), 115–124 (2021). https://doi.org/10.2298/jmmb200403009c

    Article  CAS  Google Scholar 

  7. X. Wang, Y. Du, C. Liu, Z. Hu, P. Li, Z. Gao, H. Guo, B. Jiang, Relationship among process parameters, microstructure, and mechanical properties of austempered ductile iron (ADI). Mater. Sci. Eng. A-struct. Mater. Prop. Microstruct. Process. 857, 144063 (2022). https://doi.org/10.1016/j.msea.2022.144063

    Article  CAS  Google Scholar 

  8. E. Guzik, M. Sokolnicki, M. Królikowski, M. Ronduda, A. Nowak, Prediction of microstructure in ADI castings. Arch. Metall. Mater. (2016). https://doi.org/10.1515/amm-2016-0344

    Article  Google Scholar 

  9. T.A. Hoang, H.H. Nguyen, D.H. Nguyen, N. Tran, N.D. Nam, Austenitization and formation of ausferrite structure in austempered ductile iron with dual matrix. Mater. Res. Express (2022). https://doi.org/10.1088/2053-1591/ac6730

    Article  Google Scholar 

  10. H. Zhang, Y. Wu, Q. Li, X. Hong, Mechanical properties and rolling-sliding wear performance of dual phase austempered ductile iron as potential metro wheel material. Wear 406–407, 156–165 (2018). https://doi.org/10.1016/j.wear.2018.04.005

    Article  CAS  Google Scholar 

  11. F.V. Guerra, A. Bedolla-Jacuinde, I. Mejia, J. Zuno, C. Maldonado, Effects of boron addition and austempering time on microstructure, hardness and tensile properties of ductile irons. Mater. Sci. Eng. A 648, 193–201 (2015). https://doi.org/10.1016/j.msea.2015.09.066

    Article  CAS  Google Scholar 

  12. A.S. Benam, Effect of alloying elements on austempered ductile iron (ADI) properties and its process: review. DOAJ (DOAJ: Directory of Open Access Journals). https://doaj.org/article/1b67bcf5cf22457197d21b90cf2c83b5 (2015)

  13. M.A. Ahmed, E. Riedel, M. Kovalko, A.T. Volochko, R. Bähr, A. Nofal, Ultrafine ductile and austempered ductile irons by solidification in ultrasonic field. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00683-8

    Article  Google Scholar 

  14. D. Wilk-Kołodziejczyk, K. Regulski, G. Gumienny, Comparative analysis of the properties of the nodular cast iron with carbides and the austempered ductile iron with use of the machine learning and the support vector machine. Int. J. Adv. Manuf. Technol. 87(1–4), 1077–1093 (2016). https://doi.org/10.1007/s00170-016-8510-y

    Article  Google Scholar 

  15. M. Riebisch, H.G. Sönke, B. Pustal, A. Bührig-Polaczek, Influence of Carbide-Promoting elements on the pearlite content and the tensile properties of high silicon SSDI ductile iron. Int. J. Metalcast. 12(1), 106–112 (2017). https://doi.org/10.1007/s40962-017-0146-7

    Article  Google Scholar 

  16. A.D. Basso, M. Caldera, G.L. Rivera, J.A. Sikora, High silicon ductile iron: possible uses in the production of parts with “Dual phase ADI” microstructure. ISIJ Int. 52(6), 1130–1134 (2012). https://doi.org/10.2355/isijinternational.52.1130

    Article  CAS  Google Scholar 

  17. A. Negm, S. Mohamed, M. Ibrahim, I.B. Moussa, K.M. Ibrahim, Effect of cast thickness and austenitizing temperature on microstructure and mechanical properties of ADI and IADI castings. Open J. Metal 11(03), 21–35 (2021). https://doi.org/10.4236/ojmetal.2021.113003

    Article  CAS  Google Scholar 

  18. H. Krawiec, J. Lelito, E. Tyrała, J. Banaś, Relationships between microstructure and pitting corrosion of ADI in sodium chloride solution. J. Solid-State Electrochem. 13(6), 935–942 (2009). https://doi.org/10.1007/s10008-008-0636-x

    Article  CAS  Google Scholar 

  19. S. Dervisic, H. Avdušinović, A. Gigović-Gekić, D. Kasapović, S. Pašić, Influence of ausferrite microstructure decomposition on the corrosion properties of austempered ductile iron. Mater Tehnol 54(3), 393–396 (2020). https://doi.org/10.17222/mit.2019.224

    Article  CAS  Google Scholar 

  20. S. Méndez, U. De La Torre, R. González-Martínez, R. Suárez, Advanced properties of ausferritic ductile iron obtained in As-Cast conditions. Int. J. Metalcast. 11(1), 116–122 (2016). https://doi.org/10.1007/s40962-016-0092-9

    Article  Google Scholar 

  21. Y. Yürektürk, M. Baydogan, Characterization of ferritic ductile iron subjected to successive aluminizing and austempering. Surf. Coat. Technol. 347, 142–149 (2018). https://doi.org/10.1016/j.surfcoat.2018.04.083

    Article  CAS  Google Scholar 

  22. X. Sun, X. Zuo, G. Yin, K. Jiang, Y. Tang, Electrochemical and microscopic investigation on passive behavior of ductile iron in simulated cement-mortar pore solution. Constr. Build. Mater. 150, 703–713 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.042

    Article  CAS  Google Scholar 

  23. C.R. Muñiz Valdez, D. García Navarro, J.S. Galindo Valdés, F.A. Montes González, E. Almanza Casas, N.A. Rodríguez Rosales, Determination of corrosion resistance of high-silicon ductile iron alloyed with Nb. Metals 13(5), 917 (2023). https://doi.org/10.3390/met13050917

    Article  CAS  Google Scholar 

  24. C.F. Han, Q.Q. Wang, Y. Sun, J. Li, Effects of molybdenum on the wear resistance and corrosion resistance of carbide austempered ductile iron. Metallogr. Microstruct. Anal. 4(4), 298–304 (2015). https://doi.org/10.1007/s13632-015-0215-3

    Article  CAS  Google Scholar 

  25. A. Günen, M. Kalkandelen, İH. Karahan, B. Kurt, E. Kanca, M.S. Gök, M.S. Karakaş, Properties and corrosion behavior of chromium and vanadium carbide composite coatings produced on ductile cast iron by thermoreactive diffusion technique. J. Eng. Mater. Technol. Trans. Asme 142(4), 041008 (2020). https://doi.org/10.1115/1.4047743

    Article  CAS  Google Scholar 

  26. Y. Zhang, J. Xiao, Y. Zhang, W. Liu, W. Pei, A. Zhang, W. Zhang, L. Zeng, The study on corrosion behavior and corrosion resistance of ultralow carbon high silicon iron-based alloy. Mater. Res. Express 8(2), 026504 (2021). https://doi.org/10.1088/2053-1591/abdc52

    Article  CAS  ADS  Google Scholar 

  27. X. Chen, L. Zhao, W. Zhang, H. Mohrbacher, W. Wang, A. Guo, Q. Zhai, Effects of niobium alloying on microstructure, toughness and wear resistance of austempered ductile iron. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 760, 186–194 (2019). https://doi.org/10.1016/j.msea.2019.05.100

    Article  CAS  Google Scholar 

  28. ASTM A536-84; Standard Specification for Ductile Iron Castings. ASTM International: West Conshohocken, PA, USA, (2019). https://doi.org/10.1520/a0536-84r19e01

  29. ASTM G5 Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. (2012). ASTM License Agreement, 03.02. https://doi.org/10.1520/g0005-94r04

  30. A.S.O. Pimentel, W.L. Guesser, W.J.R.C. Da Silva, P.D. Portella, M. Woydt, J. Burbank, Abrasive wear behavior of austempered ductile iron with niobium additions. Wear 440–441, 203065 (2019). https://doi.org/10.1016/j.wear.2019.203065

    Article  CAS  Google Scholar 

  31. M.A. Ahmed, M. Soliman, M. Youssef, R. Bähr, A. Nofal, Effect of niobium on the microstructure and mechanical properties of alloyed ductile irons and austempered ductile irons. Metals 11(5), 703 (2021). https://doi.org/10.3390/met11050703

    Article  CAS  Google Scholar 

  32. D. Franzen, P. Weiß, B. Pustal, A. Bührig-Polaczek, Modification of silicon microsegregation in solid-solution-strengthened ductile iron by alloying with aluminum. Int. J. Metalcast. 14(4), 1105–1114 (2020). https://doi.org/10.1007/s40962-020-00412-7

    Article  CAS  Google Scholar 

  33. O. Crisan, A. Crisan, Phase transformation and exchange bias effects in mechanically alloyed FE/magnetite powders. J. Alloy. Compd. 509(23), 6522–6527 (2011). https://doi.org/10.1016/j.jallcom.2011.03.147

    Article  CAS  Google Scholar 

  34. C.S. Roberts, Effect of carbon on the volume fractions and lattice Parameters of Retained Austenite and Martensite. JOM 5(2), 203–204 (1953). https://doi.org/10.1007/bf03397477

    Article  Google Scholar 

  35. J. Mallia, M. Grech, R. Smallman, Effect of silicon content on transformation kinetics of austempered ductile iron. Mater. Sci. Technol. 14(5), 452–460 (1998). https://doi.org/10.1179/mst.1998.14.5.452

    Article  CAS  ADS  Google Scholar 

  36. J.M. Vélez, A. Garboggini, A.P. Tschiptschin, Effect of silicon on kinetics of bainitic reaction in austempered ductile cast iron. Mater. Sci. Technol. 12(4), 329–337 (1996). https://doi.org/10.1179/mst.1996.12.4.329

    Article  ADS  Google Scholar 

  37. R.C. Voigt, Austempered ductile Iron—Processing and Properties. Cast Metals 2(2), 71–93 (1989). https://doi.org/10.1080/09534962.1989.11818986

    Article  Google Scholar 

  38. J.R. Keough, K.L. Hayrynen, V. Popovski, S.L. Sumner, A. Rimmer, Agricultural applications of austempered iron components (2009). https://api.semanticscholar.org/CorpusID:55095305

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Rodríguez Rosales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, D.G., González, F.M., Valdez, C.R.M. et al. Effect of Austempering Conditions on the Corrosion Behavior of HSADI Alloyed with Niobium. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01293-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01293-w

Keywords

Navigation